mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
tools: make v test-cleancode test everything by default (#10050)
This commit is contained in:
@@ -14,7 +14,7 @@ pub fn factorial(n f64) f64 {
|
||||
// For a large postive argument (n >= FACTORIALS.len) return max_f64
|
||||
|
||||
if n >= factorials_table.len {
|
||||
return math.max_f64
|
||||
return math.max_f64
|
||||
}
|
||||
|
||||
// Otherwise return n!.
|
||||
@@ -30,51 +30,51 @@ pub fn log_factorial(n f64) f64 {
|
||||
// For a large postive argument (n < 0) return max_f64
|
||||
|
||||
if n < 0 {
|
||||
return -math.max_f64
|
||||
return -math.max_f64
|
||||
}
|
||||
|
||||
// If n < N then return ln(n!).
|
||||
|
||||
if n != f64(i64(n)) {
|
||||
return math.log_gamma(n+1)
|
||||
return math.log_gamma(n + 1)
|
||||
} else if n < log_factorials_table.len {
|
||||
return log_factorials_table[i64(n)]
|
||||
}
|
||||
return log_factorials_table[i64(n)]
|
||||
}
|
||||
|
||||
// Otherwise return asymptotic expansion of ln(n!).
|
||||
|
||||
return log_factorial_asymptotic_expansion(int(n))
|
||||
return log_factorial_asymptotic_expansion(int(n))
|
||||
}
|
||||
|
||||
fn log_factorial_asymptotic_expansion(n int) f64 {
|
||||
m := 6
|
||||
mut term := []f64{}
|
||||
xx := f64((n + 1) * (n + 1))
|
||||
mut xj := f64(n + 1)
|
||||
m := 6
|
||||
mut term := []f64{}
|
||||
xx := f64((n + 1) * (n + 1))
|
||||
mut xj := f64(n + 1)
|
||||
|
||||
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
|
||||
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
|
||||
|
||||
mut i := 0
|
||||
mut i := 0
|
||||
|
||||
for i = 0; i < m; i++ {
|
||||
term << b_numbers[i] / xj
|
||||
xj *= xx
|
||||
}
|
||||
for i = 0; i < m; i++ {
|
||||
term << b_numbers[i] / xj
|
||||
xj *= xx
|
||||
}
|
||||
|
||||
mut sum := term[m-1]
|
||||
mut sum := term[m - 1]
|
||||
|
||||
for i = m - 2; i >= 0; i-- {
|
||||
if math.abs(sum) <= math.abs(term[i]) {
|
||||
break
|
||||
}
|
||||
for i = m - 2; i >= 0; i-- {
|
||||
if math.abs(sum) <= math.abs(term[i]) {
|
||||
break
|
||||
}
|
||||
|
||||
sum = term[i]
|
||||
}
|
||||
sum = term[i]
|
||||
}
|
||||
|
||||
for i >= 0 {
|
||||
sum += term[i]
|
||||
i--
|
||||
}
|
||||
for i >= 0 {
|
||||
sum += term[i]
|
||||
i--
|
||||
}
|
||||
|
||||
return log_factorial + sum
|
||||
return log_factorial + sum
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user