1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

Revert "B-tree map "

This reverts commit 8a4bce667c.
This commit is contained in:
Alexander Medvednikov 2019-12-30 20:01:24 +01:00
parent 4424f83470
commit 907254b9e8
2 changed files with 222 additions and 379 deletions

View File

@ -1,435 +1,274 @@
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license // Use of this source code is governed by an MIT license
// that can be found in the LICENSE file. // that can be found in the LICENSE file.
module builtin module builtin
import strings import strings
// B-trees are balanced search trees with all leaves at
// the same level. B-trees are generally faster than
// binary search trees due to the better locality of
// reference, since multiple keys are stored in one node.
// The number for `degree` has been picked through vigor-
// ous benchmarking but can be changed to any number > 1.
// `degree` determines the size of each node.
const (
degree = 6
mid_index = degree - 1
max_size = 2 * degree - 1
children_bytes = sizeof(voidptr) * (max_size + 1)
)
pub struct map { pub struct map {
value_bytes int element_size int
mut:
root &mapnode root &mapnode
pub mut: pub:
size int size int
} }
struct mapnode { struct mapnode {
mut: left &mapnode
keys [11]string // TODO: Should use `max_size` right &mapnode
values [11]voidptr // TODO: Should use `max_size` is_empty bool // set by delete()
children &voidptr key string
size int val voidptr
} }
fn new_map(n, value_bytes int) map { // TODO: Remove `n` fn new_map(cap, elm_size int) map {
return map { res := map{
value_bytes: value_bytes element_size: elm_size
root: new_node() root: 0
size: 0
} }
return res
} }
fn new_map_init(n, value_bytes int, keys &string, values voidptr) map { // `m := { 'one': 1, 'two': 2 }`
mut out := new_map(n, value_bytes) fn new_map_init(cap, elm_size int, keys &string, vals voidptr) map {
for i in 0 .. n { mut res := map{
out.set(keys[i], values + i * value_bytes) element_size: elm_size
root: 0
} }
return out for i in 0 .. cap {
res.set(keys[i], vals + i * elm_size)
}
return res
} }
// The tree is initialized with an empty node as root to fn new_node(key string, val voidptr, element_size int) &mapnode {
// avoid having to check whether the root is null for new_e := &mapnode{
// each insertion. key: key
fn new_node() &mapnode { val: malloc(element_size)
return &mapnode { left: 0
children: 0 right: 0
size: 0
} }
C.memcpy(new_e.val, val, element_size)
return new_e
} }
// This implementation does proactive insertion, meaning fn (m mut map) insert(n mut mapnode, key string, val voidptr) {
// that splits are done top-down and not bottom-up. if n.key == key {
fn (m mut map) set(key string, value voidptr) { C.memcpy(n.val, val, m.element_size)
mut node := m.root if n.is_empty {
mut child_index := 0 m.size++
mut parent := &mapnode(0) n.is_empty = false
for {
if node.size == max_size {
if isnil(parent) {
parent = new_node()
m.root = parent
} }
parent.split_child(child_index, mut node)
if key == parent.keys[child_index] {
C.memcpy(parent.values[child_index], value, m.value_bytes)
return return
} }
node = if key < parent.keys[child_index] { if n.key > key {
&mapnode(parent.children[child_index]) if n.left == 0 {
} else { n.left = new_node(key, val, m.element_size)
&mapnode(parent.children[child_index + 1]) m.size++
} }
else {
m.insert(mut n.left, key, val)
} }
mut i := 0
for i < node.size && key > node.keys[i] { i++ }
if i != node.size && key == node.keys[i] {
C.memcpy(node.values[i], value, m.value_bytes)
return return
} }
if isnil(node.children) { if n.right == 0 {
mut j := node.size - 1 n.right = new_node(key, val, m.element_size)
for j >= 0 && key < node.keys[j] { m.size++
node.keys[j + 1] = node.keys[j]
node.values[j + 1] = node.values[j]
j--
} }
node.keys[j + 1] = key else {
node.values[j + 1] = malloc(m.value_bytes) m.insert(mut n.right, key, val)
C.memcpy(node.values[j + 1], value, m.value_bytes) }
node.size++ }
fn (n &mapnode) find(key string, out voidptr, element_size int) bool {
if n.key == key {
C.memcpy(out, n.val, element_size)
return true
}
else if n.key > key {
if n.left == 0 {
return false
}
else {
return n.left.find(key, out, element_size)
}
}
else {
if n.right == 0 {
return false
}
else {
return n.right.find(key, out, element_size)
}
}
}
// same as `find`, but doesn't return a value. Used by `exists`
fn (n &mapnode) find2(key string, element_size int) bool {
if n.key == key && !n.is_empty {
return true
}
else if n.key > key {
if isnil(n.left) {
return false
}
else {
return n.left.find2(key, element_size)
}
}
else {
if isnil(n.right) {
return false
}
else {
return n.right.find2(key, element_size)
}
}
}
fn (m mut map) set(key string, val voidptr) {
if isnil(m.root) {
m.root = new_node(key, val, m.element_size)
m.size++ m.size++
return return
} }
parent = node m.insert(mut m.root, key, val)
child_index = i
node = &mapnode(node.children[child_index])
}
} }
fn (n mut mapnode) split_child(child_index int, y mut mapnode) { /*
mut z := new_node() fn (m map) bs(query string, start, end int, out voidptr) {
z.size = mid_index // println('bs "$query" $start -> $end')
y.size = mid_index mid := start + ((end - start) / 2)
for j := mid_index - 1; j >= 0; j-- { if end - start == 0 {
z.keys[j] = y.keys[j + degree] last := m.entries[end]
z.values[j] = y.values[j + degree] C.memcpy(out, last.val, m.element_size)
}
if !isnil(y.children) {
z.children = &voidptr(malloc(children_bytes))
for j := degree - 1; j >= 0; j-- {
z.children[j] = y.children[j + degree]
}
}
if isnil(n.children) {
n.children = &voidptr(malloc(children_bytes))
}
n.children[n.size + 1] = n.children[n.size]
for j := n.size; j > child_index; j-- {
n.keys[j] = n.keys[j - 1]
n.values[j] = n.values[j - 1]
n.children[j] = n.children[j - 1]
}
n.keys[child_index] = y.keys[mid_index]
n.values[child_index] = y.values[mid_index]
n.children[child_index] = voidptr(y)
n.children[child_index + 1] = voidptr(z)
n.size++
}
fn (m map) get(key string, out voidptr) bool {
mut node := m.root
for {
mut i := node.size - 1
for i >= 0 && key < node.keys[i] { i-- }
if i != -1 && key == node.keys[i] {
C.memcpy(out, node.values[i], m.value_bytes)
return true
}
if isnil(node.children) {
break
}
node = &mapnode(node.children[i + 1])
}
return false
}
fn (m map) exists(key string) bool {
if isnil(m.root) { // TODO: find out why root can be nil
return false
}
mut node := m.root
for {
mut i := node.size - 1
for i >= 0 && key < node.keys[i] { i-- }
if i != -1 && key == node.keys[i] {
return true
}
if isnil(node.children) {
break
}
node = &mapnode(node.children[i + 1])
}
return false
}
fn (n mapnode) find_key(k string) int {
mut idx := 0
for idx < n.size && n.keys[idx] < k {
idx++
}
return idx
}
fn (n mut mapnode) remove_key(k string) bool {
idx := n.find_key(k)
if idx < n.size && n.keys[idx] == k {
if isnil(n.children) {
n.remove_from_leaf(idx)
} else {
n.remove_from_non_leaf(idx)
}
return true
} else {
if isnil(n.children) {
return false
}
flag := if idx == n.size {true} else {false}
if (&mapnode(n.children[idx])).size < degree {
n.fill(idx)
}
if flag && idx > n.size {
return (&mapnode(n.children[idx - 1])).remove_key(k)
} else {
return (&mapnode(n.children[idx])).remove_key(k)
}
}
}
fn (n mut mapnode) remove_from_leaf(idx int) {
for i := idx + 1; i < n.size; i++ {
n.keys[i - 1] = n.keys[i]
n.values[i - 1] = n.values[i]
}
n.size--
}
fn (n mut mapnode) remove_from_non_leaf(idx int) {
k := n.keys[idx]
if &mapnode(n.children[idx]).size >= degree {
mut current := &mapnode(n.children[idx])
for !isnil(current.children) {
current = &mapnode(current.children[current.size])
}
predecessor := current.keys[current.size - 1]
n.keys[idx] = predecessor
n.values[idx] = current.values[current.size - 1]
(&mapnode(n.children[idx])).remove_key(predecessor)
} else if &mapnode(n.children[idx + 1]).size >= degree {
mut current := &mapnode(n.children[idx + 1])
for !isnil(current.children) {
current = &mapnode(current.children[0])
}
successor := current.keys[0]
n.keys[idx] = successor
n.values[idx] = current.values[0]
(&mapnode(n.children[idx + 1])).remove_key(successor)
} else {
n.merge(idx)
(&mapnode(n.children[idx])).remove_key(k)
}
}
fn (n mut mapnode) fill(idx int) {
if idx != 0 && &mapnode(n.children[idx - 1]).size >= degree {
n.borrow_from_prev(idx)
} else if idx != n.size && &mapnode(n.children[idx + 1]).size >= degree {
n.borrow_from_next(idx)
} else if idx != n.size {
n.merge(idx)
} else {
n.merge(idx - 1)
}
}
fn (n mut mapnode) borrow_from_prev(idx int) {
mut child := &mapnode(n.children[idx])
mut sibling := &mapnode(n.children[idx - 1])
for i := child.size - 1; i >= 0; i-- {
child.keys[i + 1] = child.keys[i]
child.values[i + 1] = child.values[i]
}
if !isnil(child.children) {
for i := child.size; i >= 0; i-- {
child.children[i + 1] = child.children[i]
}
}
child.keys[0] = n.keys[idx - 1]
child.values[0] = n.values[idx - 1]
if !isnil(child.children) {
child.children[0] = sibling.children[sibling.size]
}
n.keys[idx - 1] = sibling.keys[sibling.size - 1]
n.values[idx - 1] = sibling.values[sibling.size - 1]
child.size++
sibling.size--
}
fn (n mut mapnode) borrow_from_next(idx int) {
mut child := &mapnode(n.children[idx])
mut sibling := &mapnode(n.children[idx + 1])
child.keys[child.size] = n.keys[idx]
child.values[child.size] = n.values[idx]
if !isnil(child.children) {
child.children[child.size + 1] = sibling.children[0]
}
n.keys[idx] = sibling.keys[0]
n.values[idx] = sibling.values[0]
for i := 1; i < sibling.size; i++ {
sibling.keys[i - 1] = sibling.keys[i]
sibling.values[i - 1] = sibling.values[i]
}
if !isnil(sibling.children) {
for i := 1; i <= sibling.size; i++ {
sibling.children[i - 1] = sibling.children[i]
}
}
child.size++
sibling.size--
}
fn (n mut mapnode) merge(idx int) {
mut child := &mapnode(n.children[idx])
sibling := &mapnode(n.children[idx + 1])
child.keys[mid_index] = n.keys[idx]
child.values[mid_index] = n.values[idx]
for i := 0; i < sibling.size; i++ {
child.keys[i + degree] = sibling.keys[i]
child.values[i + degree] = sibling.values[i]
}
if !isnil(child.children) {
for i := 0; i <= sibling.size; i++ {
child.children[i + degree] = sibling.children[i]
}
}
for i := idx + 1; i < n.size; i++ {
n.keys[i - 1] = n.keys[i]
n.values[i - 1] = n.values[i]
}
for i := idx + 2; i <= n.size; i++ {
n.children[i - 1] = n.children[i]
}
child.size += sibling.size + 1
n.size--
// free(sibling)
}
pub fn (m mut map) delete(key string) {
if m.root.size == 0 {
return return
} }
if end - start == 1 {
removed := m.root.remove_key(key) first := m.entries[start]
if removed { C.memcpy(out, first.val, m.element_size)
m.size--
}
if m.root.size == 0 {
// tmp := t.root
if isnil(m.root.children) {
return return
} else {
m.root = &mapnode(m.root.children[0])
} }
// free(tmp) if mid >= m.entries.len {
return
} }
mid_msg := m.entries[mid]
// println('mid.key=$mid_msg.key')
if query < mid_msg.key {
m.bs(query, start, mid, out)
return
}
m.bs(query, mid, end, out)
} }
*/
// Insert all keys of the subtree into array `keys`
// starting at `at`. Keys are inserted in order. fn preorder_keys(node &mapnode, keys mut []string, key_i int) int {
fn (n mapnode) subkeys(keys mut []string, at int) int { mut i := key_i
mut position := at if !node.is_empty {
if !isnil(n.children) { keys[i] = node.key
// Traverse children and insert i++
// keys inbetween children
for i in 0..n.size {
child := &mapnode(n.children[i])
position += child.subkeys(mut keys, position)
keys[position] = n.keys[i]
position++
} }
// Insert the keys of the last child if !isnil(node.left) {
child := &mapnode(n.children[n.size]) i = preorder_keys(node.left, mut keys, i)
position += child.subkeys(mut keys, position)
} else {
// If leaf, insert keys
for i in 0..n.size {
keys[position + i] = n.keys[i]
} }
position += n.size if !isnil(node.right) {
i = preorder_keys(node.right, mut keys, i)
} }
// Return # of added keys return i
return position - at
} }
pub fn (m &map) keys() []string { pub fn (m &map) keys() []string {
mut keys := [''].repeat(m.size) mut keys := [''].repeat(m.size)
if isnil(m.root) || m.root.size == 0 {
return keys
}
m.root.subkeys(mut keys, 0)
return keys
}
fn (n mut mapnode) free() {
mut i := 0
if isnil(n.children) {
i = 0
for i < n.size {
i++
}
} else {
i = 0
for i < n.size {
&mapnode(n.children[i]).free()
i++
}
&mapnode(n.children[i]).free()
}
// free(n)
}
pub fn (m mut map) free() {
if isnil(m.root) { if isnil(m.root) {
return keys
}
preorder_keys(m.root, mut keys, 0)
return keys
}
fn (m map) get(key string, out voidptr) bool {
// println('g')
if m.root == 0 {
return false
}
return m.root.find(key, out, m.element_size)
}
pub fn (n mut mapnode) delete(key string, element_size int) {
if n.key == key {
C.memset(n.val, 0, element_size)
n.is_empty = true
return return
} }
m.root.free() else if n.key > key {
if isnil(n.left) {
return
}
else {
n.left.delete(key, element_size)
}
}
else {
if isnil(n.right) {
return
}
else {
n.right.delete(key, element_size)
}
}
}
pub fn (m mut map) delete(key string) {
if m.exists(key) {
m.root.delete(key, m.element_size)
m.size--
}
}
fn (m map) exists(key string) bool {
return !isnil(m.root) && m.root.find2(key, m.element_size)
} }
pub fn (m map) print() { pub fn (m map) print() {
println('<<<<<<<<') println('<<<<<<<<')
//for i := 0; i < m.entries.len; i++ { // for i := 0; i < m.entries.len; i++ {
// entry := m.entries[i] // entry := m.entries[i]
// println('$entry.key => $entry.val') // println('$entry.key => $entry.val')
//} // }
/* /*
for i := 0; i < m.cap * m.value_bytes; i++ { for i := 0; i < m.cap * m.element_size; i++ {
b := m.table[i] b := m.table[i]
print('$i: ') print('$i: ')
C.printf('%02x', b) C.printf('%02x', b)
println('') println('')
} }
*/ */
println('>>>>>>>>>>') println('>>>>>>>>>>')
} }
fn (n mut mapnode) free() {
if n.val != 0 {
free(n.val)
}
if n.left != 0 {
n.left.free()
}
if n.right != 0 {
n.right.free()
}
free(n)
}
pub fn (m mut map) free() {
if m.root == 0 {
return
}
m.root.free()
// C.free(m.table)
// C.free(m.keys_table)
}
pub fn (m map_string) str() string { pub fn (m map_string) str() string {
if m.size == 0 { if m.size == 0 {
return '{}' return '{}'
@ -442,3 +281,4 @@ pub fn (m map_string) str() string {
sb.writeln('}') sb.writeln('}')
return sb.str() return sb.str()
} }

View File

@ -23,16 +23,19 @@ fn test_map() {
assert m.size == 2 assert m.size == 2
assert 'hi' in m assert 'hi' in m
mut sum := 0 mut sum := 0
mut key_sum := ''
// Test `for in` // Test `for in`
for key, val in m { for key, val in m {
sum += val sum += val
key_sum += key
} }
assert sum == 80 + 101 assert sum == 80 + 101
assert key_sum == 'hihello'
// Test `.keys()` // Test `.keys()`
keys := m.keys() keys := m.keys()
assert keys.len == 2 assert keys.len == 2
assert 'hi' in keys assert keys[0] == 'hi'
assert 'hello' in keys assert keys[1] == 'hello'
m.delete('hi') m.delete('hi')
assert m.size == 1 assert m.size == 1
m.delete('aloha') m.delete('aloha')