1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: faster factorial function

This commit is contained in:
Yash Tripathi 2019-07-17 03:33:51 +05:30 committed by Alexander Medvednikov
parent a743ecaff9
commit 982496ffce
2 changed files with 46 additions and 15 deletions

View File

@ -7,7 +7,7 @@ module math
// NOTE // NOTE
// When adding a new function, please make sure it's in the right place. // When adding a new function, please make sure it's in the right place.
// All functions are sorted alphabetically. // All functions are sorted alphabetically.
const ( const (
E = 2.71828182845904523536028747135266249775724709369995957496696763 E = 2.71828182845904523536028747135266249775724709369995957496696763
@ -34,13 +34,13 @@ const (
MinI16 = -1 << 15 MinI16 = -1 << 15
MaxI32 = (1<<31) - 1 MaxI32 = (1<<31) - 1
MinI32 = -1 << 31 MinI32 = -1 << 31
// MaxI64 = ((1<<63) - 1) // MaxI64 = ((1<<63) - 1)
// MinI64 = (-(1 << 63) ) // MinI64 = (-(1 << 63) )
MaxU8 = (1<<8) - 1 MaxU8 = (1<<8) - 1
MaxU16 = (1<<16) - 1 MaxU16 = (1<<16) - 1
MaxU32 = (1<<32) - 1 MaxU32 = (1<<32) - 1
MaxU64 = (1<<64) - 1 MaxU64 = (1<<64) - 1
) )
// Returns the absolute value. // Returns the absolute value.
pub fn abs(a f64) f64 { pub fn abs(a f64) f64 {
@ -76,7 +76,7 @@ pub fn cbrt(a f64) f64 {
} }
// ceil returns the nearest integer greater or equal to the provided value. // ceil returns the nearest integer greater or equal to the provided value.
pub fn ceil(a f64) f64 { pub fn ceil(a f64) int {
return C.ceil(a) return C.ceil(a)
} }
@ -131,15 +131,45 @@ pub fn exp2(a f64) f64 {
} }
// factorial calculates the factorial of the provided value. // factorial calculates the factorial of the provided value.
pub fn factorial(a int) i64 { fn recursive_product( n int, current_number_ptr &int) int{
if a < 0 { mut m := n / 2
panic('factorial: Cannot find factorial of negative number') if (m == 0){
} return *current_number_ptr += 2
mut prod := 1 }
for i:= 0; i < a; i++ { if (n == 2){
prod *= (i+1) return (*current_number_ptr += 2) * (*current_number_ptr += 2)
} }
return prod return recursive_product((n - m), *current_number_ptr) * recursive_product(m, *current_number_ptr)
}
pub fn factorial(n int) i64 {
if n < 0 {
panic('factorial: Cannot find factorial of negative number')
}
if n < 2 {
return i64(1)
}
mut r := 1
mut p := 1
mut current_number := 1
mut h := 0
mut shift := 0
mut high := 1
mut len := high
mut log2n := int(floor(log2(n)))
for ;h != n; {
shift += h
h = n >> log2n
log2n -= 1
len = high
high = (h - 1) | 1
len = (high - len)/2
if (len > 0){
p *= recursive_product(len, &current_number)
r *= p
}
}
return i64((r << shift))
} }
// floor returns the nearest integer lower or equal of the provided value. // floor returns the nearest integer lower or equal of the provided value.

View File

@ -28,6 +28,7 @@ fn test_digits() {
} }
fn test_factorial() { fn test_factorial() {
assert math.factorial(12) == 479001600
assert math.factorial(5) == 120 assert math.factorial(5) == 120
assert math.factorial(0) == 1 assert math.factorial(0) == 1
} }