From a251db068f8acec2b736ae38928b1693a8838312 Mon Sep 17 00:00:00 2001 From: Alexander Medvednikov Date: Sun, 22 Dec 2019 02:22:32 +0300 Subject: [PATCH] run vfmt on math and sha; add vfmt check to test-compiler --- examples/spectral.v | 96 +++--- tools/vtest-compiler.v | 18 ++ vlib/compiler/parser.v | 5 +- vlib/compiler/preludes/tests_assertions.v | 45 +-- vlib/compiler/vfmt.v | 13 + vlib/crypto/crypto.v | 1 + vlib/crypto/sha512/sha512.v | 209 +++++++------ vlib/crypto/sha512/sha512_test.v | 4 +- vlib/crypto/sha512/sha512block_generic.v | 192 ++++++------ vlib/encoding/binary/binary.v | 54 ++-- vlib/math/bits.v | 41 +-- vlib/math/bits/bits.v | 108 ++++--- vlib/math/bits/bits_tables.v | 144 +++++---- vlib/math/const.v | 33 +-- vlib/math/fact_tables.v | 346 +++++++++++----------- vlib/math/math.v | 68 ++++- vlib/math/unsafe.v | 3 +- 17 files changed, 721 insertions(+), 659 deletions(-) diff --git a/examples/spectral.v b/examples/spectral.v index 5fbca6e414..cd95f7d5de 100644 --- a/examples/spectral.v +++ b/examples/spectral.v @@ -1,78 +1,70 @@ /* https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html Added: Pradeep Verghese -Benchmarks: +Benchmarks: Used v -prod spectral.v Command: time ./spectral 5500 Output: 1.274224153 Time: 11.67s user 0.02s system 99% cpu 11.721 total */ - module main + import math import os - fn evala(i, j int) int { - return ((i+j)*(i+j+1)/2 + i + 1) + return ((i + j) * (i + j + 1) / 2 + i + 1) } fn times(v mut []f64, u []f64) { - for i := 0; i < v.len; i++ { - mut a := f64(0) - for j :=0; j< u.len; j++ { - a += u[j] /f64(evala(i,j)) - } - v[i] = a - } + for i := 0; i < v.len; i++ { + mut a := f64(0) + for j := 0; j < u.len; j++ { + a += u[j] / f64(evala(i, j)) + } + v[i] = a + } } fn times_trans(v mut []f64, u []f64) { - for i := 0; i< v.len; i++ { - mut a := f64(0) - for j :=0; j< u.len; j++ { - a += u[j] / f64(evala(j,i)) - } - v[i] = a - } + for i := 0; i < v.len; i++ { + mut a := f64(0) + for j := 0; j < u.len; j++ { + a += u[j] / f64(evala(j, i)) + } + v[i] = a + } } fn a_times_transp(v mut []f64, u []f64) { - mut x := [f64(0)].repeat(u.len) - times(mut x, u) - times_trans(mut v, x) -} + mut x := [f64(0)].repeat(u.len) + times(mut x, u) + times_trans(mut v, x) +} fn main() { - - args := os.args - mut n := int(0) - - if args.len == 2 { - n = args[1].int() - } - else { - n = 0 - } - mut u := [f64(1.0)].repeat(n) - mut v := [f64(1.0)].repeat(n) - - for i := 0; i< 10; i++ { - a_times_transp(mut v, u) - a_times_transp(mut u, v) - } - - mut vbv := f64(0) - mut vv := f64(0) - - for i :=0; i< n; i++ { - vbv += u[i] * v[i] - vv += v[i] * v[i] - } - ans := math.sqrt(vbv/vv) - - println('${ans:0.9f}') - - + args := os.args + mut n := int(0) + if args.len == 2 { + n = args[1].int() + } + else { + n = 0 + } + mut u := [f64(1.0)].repeat(n) + mut v := [f64(1.0)].repeat(n) + for i := 0; i < 10; i++ { + a_times_transp(mut v, u) + a_times_transp(mut u, v) + } + mut vbv := f64(0) + mut vv := f64(0) + for i := 0; i < n; i++ { + vbv += u[i] * v[i] + vv += v[i] * v[i] + } + ans := math.sqrt(vbv / vv) + println('${ans:0.9f}') } + diff --git a/tools/vtest-compiler.v b/tools/vtest-compiler.v index 728155e3f4..674e7be440 100644 --- a/tools/vtest-compiler.v +++ b/tools/vtest-compiler.v @@ -18,6 +18,12 @@ fn main() { } fn v_test_compiler(vargs string){ + v_test_compiler2(vargs) + //make_sure_vfmt_was_run() +} + +fn v_test_compiler2(vargs string){ + vexe := testing.vexe_path() parent_dir := os.dir(vexe) testing.vlib_should_be_present( parent_dir ) @@ -74,6 +80,8 @@ fn v_test_compiler(vargs string){ vmark.stop() eprintln( 'Installing a v module took: ' + vmark.total_duration().str() + 'ms') + make_sure_vfmt_was_run() + if building_tools_failed || compiler_test_session.failed || building_examples_failed || @@ -82,3 +90,13 @@ fn v_test_compiler(vargs string){ } } + +fn make_sure_vfmt_was_run() { + files := os.walk_ext('.', '_test.v') + for file in files { + println(file) + os.exec('./vfmt $file') or { + println('$file failed') + } + } +} diff --git a/vlib/compiler/parser.v b/vlib/compiler/parser.v index 4c03399f58..638018eb5e 100644 --- a/vlib/compiler/parser.v +++ b/vlib/compiler/parser.v @@ -2513,7 +2513,7 @@ fn (p mut Parser) array_init() string { const_name := p.prepend_mod(p.lit) if p.table.known_const(const_name) { c := p.table.find_const(const_name) or { - // p.error('unknown const `$p.lit`') + p.error('unknown const `$const_name`') exit(1) } if c.typ == 'int' && p.peek() == .rsbr { @@ -2582,8 +2582,9 @@ fn (p mut Parser) array_init() string { } if p.tok != .rsbr && p.tok != .semicolon { p.gen(', ') + line_nr := p.tok p.check(.comma) - p.fspace() + p.fspace_or_newline() } i++ // Repeat (a = [0;5] ) diff --git a/vlib/compiler/preludes/tests_assertions.v b/vlib/compiler/preludes/tests_assertions.v index d1688715a6..2d5fdcf4f1 100644 --- a/vlib/compiler/preludes/tests_assertions.v +++ b/vlib/compiler/preludes/tests_assertions.v @@ -2,34 +2,35 @@ module main import os import term - -//////////////////////////////////////////////////////////////////// -/// This file will get compiled as part of the main program, -/// for a _test.v file. -/// The methods defined here are called back by the test program's -/// assert statements, on each success/fail. The goal is to make -/// customizing the look & feel of the assertions results easier, -/// since it is done in normal V code, instead of in embedded C ... -//////////////////////////////////////////////////////////////////// - -fn cb_assertion_failed(filename string, line int, sourceline string, funcname string){ +// ////////////////////////////////////////////////////////////////// +// / This file will get compiled as part of the main program, +// / for a _test.v file. +// / The methods defined here are called back by the test program's +// / assert statements, on each success/fail. The goal is to make +// / customizing the look & feel of the assertions results easier, +// / since it is done in normal V code, instead of in embedded C ... +// ////////////////////////////////////////////////////////////////// +fn cb_assertion_failed(filename string, line int, sourceline string, funcname string) { color_on := term.can_show_color_on_stderr() use_relative_paths := match os.getenv('VERROR_PATHS') { - 'absolute' { false } - else { true } - } - final_filename := if use_relative_paths { filename } else { os.realpath( filename ) } - final_funcname := funcname.replace('main__','').replace('__','.') - + 'absolute'{ + false + } + else { + true}} + final_filename := if use_relative_paths { filename } else { os.realpath(filename) } + final_funcname := funcname.replace('main__', '').replace('__', '.') mut fail_message := 'FAILED assertion' - if color_on { fail_message = term.bold(term.red(fail_message)) } - + if color_on { + fail_message = term.bold(term.red(fail_message)) + } eprintln('$final_filename:$line: $fail_message') eprintln('Function: $final_funcname') eprintln('Source : $sourceline') } -fn cb_assertion_ok(filename string, line int, sourceline string, funcname string){ - //do nothing for now on an OK assertion - //println('OK ${line:5d}|$sourceline ') +fn cb_assertion_ok(filename string, line int, sourceline string, funcname string) { + // do nothing for now on an OK assertion + // println('OK ${line:5d}|$sourceline ') } + diff --git a/vlib/compiler/vfmt.v b/vlib/compiler/vfmt.v index dd4cfdeaff..726bae588a 100644 --- a/vlib/compiler/vfmt.v +++ b/vlib/compiler/vfmt.v @@ -52,6 +52,19 @@ fn (p mut Parser) fspace() { p.fgen(' ') } +[if vfmt] +fn (p mut Parser) fspace_or_newline() { + if p.first_pass() { + return + } + if p.token_idx >= 2 && p.tokens[p.token_idx-1].line_nr != + p.tokens[p.token_idx-2].line_nr { + p.fgen_nl() + } else { + p.fgen(' ') + } +} + [if vfmt] fn (p mut Parser) fgenln(s string) { diff --git a/vlib/crypto/crypto.v b/vlib/crypto/crypto.v index 12a092fcb2..7c0e4fbe5d 100644 --- a/vlib/crypto/crypto.v +++ b/vlib/crypto/crypto.v @@ -21,3 +21,4 @@ pub enum Hash { blake2b_384 blake2b_512 } + diff --git a/vlib/crypto/sha512/sha512.v b/vlib/crypto/sha512/sha512.v index 161f529bf9..dde1b661db 100644 --- a/vlib/crypto/sha512/sha512.v +++ b/vlib/crypto/sha512/sha512.v @@ -1,13 +1,10 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - // Package sha512 implements the SHA-384, SHA-512, SHA-512/224, and SHA-512/256 // hash algorithms as defined in FIPS 180-4. - // Based off: https://github.com/golang/go/tree/master/src/crypto/sha512 // Last commit: https://github.com/golang/go/commit/3ce865d7a0b88714cc433454ae2370a105210c01 - module sha512 import ( @@ -16,7 +13,7 @@ import ( ) pub const ( - // size is the size, in bytes, of a SHA-512 checksum. +// size is the size, in bytes, of a SHA-512 checksum. size = 64 // size224 is the size, in bytes, of a SHA-512/224 checksum. size224 = 28 @@ -30,15 +27,15 @@ pub const ( ) const ( - Chunk = 128 - init0 = 0x6a09e667f3bcc908 - init1 = 0xbb67ae8584caa73b - init2 = 0x3c6ef372fe94f82b - init3 = 0xa54ff53a5f1d36f1 - init4 = 0x510e527fade682d1 - init5 = 0x9b05688c2b3e6c1f - init6 = 0x1f83d9abfb41bd6b - init7 = 0x5be0cd19137e2179 + Chunk = 128 + init0 = 0x6a09e667f3bcc908 + init1 = 0xbb67ae8584caa73b + init2 = 0x3c6ef372fe94f82b + init3 = 0xa54ff53a5f1d36f1 + init4 = 0x510e527fade682d1 + init5 = 0x9b05688c2b3e6c1f + init6 = 0x1f83d9abfb41bd6b + init7 = 0x5be0cd19137e2179 init0_224 = 0x8c3d37c819544da2 init1_224 = 0x73e1996689dcd4d6 init2_224 = 0x1dfab7ae32ff9c82 @@ -64,7 +61,6 @@ const ( init6_384 = 0xdb0c2e0d64f98fa7 init7_384 = 0x47b5481dbefa4fa4 ) - // digest represents the partial evaluation of a checksum. struct Digest { mut: @@ -79,54 +75,55 @@ fn (d mut Digest) reset() { d.h = [u64(0)].repeat(8) d.x = [byte(0)].repeat(Chunk) match d.function { - .sha384 { - d.h[0] = init0_384 - d.h[1] = init1_384 - d.h[2] = init2_384 - d.h[3] = init3_384 - d.h[4] = init4_384 - d.h[5] = init5_384 - d.h[6] = init6_384 - d.h[7] = init7_384 - } - .sha512_224 { - d.h[0] = init0_224 - d.h[1] = init1_224 - d.h[2] = init2_224 - d.h[3] = init3_224 - d.h[4] = init4_224 - d.h[5] = init5_224 - d.h[6] = init6_224 - d.h[7] = init7_224 - } - .sha512_256 { - d.h[0] = init0_256 - d.h[1] = init1_256 - d.h[2] = init2_256 - d.h[3] = init3_256 - d.h[4] = init4_256 - d.h[5] = init5_256 - d.h[6] = init6_256 - d.h[7] = init7_256 - } - else { - d.h[0] = init0 - d.h[1] = init1 - d.h[2] = init2 - d.h[3] = init3 - d.h[4] = init4 - d.h[5] = init5 - d.h[6] = init6 - d.h[7] = init7 - } - } + .sha384 { + d.h[0] = init0_384 + d.h[1] = init1_384 + d.h[2] = init2_384 + d.h[3] = init3_384 + d.h[4] = init4_384 + d.h[5] = init5_384 + d.h[6] = init6_384 + d.h[7] = init7_384 + } + .sha512_224 { + d.h[0] = init0_224 + d.h[1] = init1_224 + d.h[2] = init2_224 + d.h[3] = init3_224 + d.h[4] = init4_224 + d.h[5] = init5_224 + d.h[6] = init6_224 + d.h[7] = init7_224 + } + .sha512_256 { + d.h[0] = init0_256 + d.h[1] = init1_256 + d.h[2] = init2_256 + d.h[3] = init3_256 + d.h[4] = init4_256 + d.h[5] = init5_256 + d.h[6] = init6_256 + d.h[7] = init7_256 + } + else { + d.h[0] = init0 + d.h[1] = init1 + d.h[2] = init2 + d.h[3] = init3 + d.h[4] = init4 + d.h[5] = init5 + d.h[6] = init6 + d.h[7] = init7 + }} d.nx = 0 d.len = 0 } // internal fn new_digest(hash crypto.Hash) &Digest { - mut d := &Digest{function: hash} + mut d := &Digest{ + function: hash + } d.reset() return d } @@ -164,16 +161,18 @@ fn (d mut Digest) write(p_ []byte) int { } if n >= p.len { p = [] - } else { + } + else { p = p[n..] } } if p.len >= Chunk { - n := p.len &~ (Chunk - 1) + n := p.len & ~(Chunk - 1) block(mut d, p[..n]) if n >= p.len { p = [] - } else { + } + else { p = p[n..] } } @@ -189,27 +188,26 @@ fn (d &Digest) sum(b_in []byte) []byte { hash := d0.checksum() mut b_out := b_in.clone() match d0.function { - .sha384 { - for b in hash[..size384] { - b_out << b + .sha384 { + for b in hash[..size384] { + b_out << b + } } - } - .sha512_224 { - for b in hash[..size224] { - b_out << b + .sha512_224 { + for b in hash[..size224] { + b_out << b + } } - } - .sha512_256 { - for b in hash[..size256] { - b_out << b + .sha512_256 { + for b in hash[..size256] { + b_out << b + } } - } - else { - for b in hash { - b_out << b - } - } - } + else { + for b in hash { + b_out << b + } + }} return b_out } @@ -218,26 +216,21 @@ fn (d mut Digest) checksum() []byte { mut len := d.len mut tmp := [byte(0)].repeat(128) tmp[0] = 0x80 - - if int(len)%128 < 112 { - d.write(tmp[..112-int(len)%128]) - } else { - d.write(tmp[..128+112-int(len)%128]) + if int(len) % 128 < 112 { + d.write(tmp[..112 - int(len) % 128]) + } + else { + d.write(tmp[..128 + 112 - int(len) % 128]) } - // Length in bits. len <<= u64(3) - binary.big_endian_put_u64(mut tmp, u64(0)) // upper 64 bits are always zero, because len variable has type u64 binary.big_endian_put_u64(mut tmp[8..], len) d.write(tmp[..16]) - if d.nx != 0 { panic('d.nx != 0') } - mut digest := [byte(0)].repeat(size) - binary.big_endian_put_u64(mut digest, d.h[0]) binary.big_endian_put_u64(mut digest[8..], d.h[1]) binary.big_endian_put_u64(mut digest[16..], d.h[2]) @@ -248,7 +241,6 @@ fn (d mut Digest) checksum() []byte { binary.big_endian_put_u64(mut digest[48..], d.h[6]) binary.big_endian_put_u64(mut digest[56..], d.h[7]) } - return digest } @@ -297,16 +289,37 @@ fn block(dig mut Digest, p []byte) { pub fn (d &Digest) size() int { match d.function { - .sha512_224 { return size224 } - .sha512_256 { return size256 } - .sha384 { return size384 } - else { return size } - } + .sha512_224 { + return size224 + } + .sha512_256 { + return size256 + } + .sha384 { + return size384 + } + else { + return size + }} } -pub fn (d &Digest) block_size() int { return block_size } +pub fn (d &Digest) block_size() int { + return block_size +} + +pub fn hexhash(s string) string { + return sum512(s.bytes()).hex() +} + +pub fn hexhash_384(s string) string { + return sum384(s.bytes()).hex() +} + +pub fn hexhash_512_224(s string) string { + return sum512_224(s.bytes()).hex() +} + +pub fn hexhash_512_256(s string) string { + return sum512_256(s.bytes()).hex() +} -pub fn hexhash(s string) string { return sum512(s.bytes()).hex() } -pub fn hexhash_384(s string) string { return sum384(s.bytes()).hex() } -pub fn hexhash_512_224(s string) string { return sum512_224(s.bytes()).hex() } -pub fn hexhash_512_256(s string) string { return sum512_256(s.bytes()).hex() } diff --git a/vlib/crypto/sha512/sha512_test.v b/vlib/crypto/sha512/sha512_test.v index ebffb6bdf7..4d559a5706 100644 --- a/vlib/crypto/sha512/sha512_test.v +++ b/vlib/crypto/sha512/sha512_test.v @@ -1,9 +1,9 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - import crypto.sha512 -fn test_crypto_sha512() { +fn test_crypto_sha512() { assert sha512.sum512('This is a sha512 checksum.'.bytes()).hex() == '4143e55fcba7e39b20f62a1368e5eb28f64a8859458886117ac66027832e0f9f5263daec688c439d2d0fa07059334668d39e59543039703dbb7e03ec9da7f8d7' } + diff --git a/vlib/crypto/sha512/sha512block_generic.v b/vlib/crypto/sha512/sha512block_generic.v index c6a8aef109..672a234e50 100644 --- a/vlib/crypto/sha512/sha512block_generic.v +++ b/vlib/crypto/sha512/sha512block_generic.v @@ -1,106 +1,101 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - // SHA512 block step. // This is the generic version with no architecture optimizations. // In its own file so that an architecture // optimized verision can be substituted - module sha512 import math.bits -const( - _k = [ - 0x428a2f98d728ae22, - 0x7137449123ef65cd, - 0xb5c0fbcfec4d3b2f, - 0xe9b5dba58189dbbc, - 0x3956c25bf348b538, - 0x59f111f1b605d019, - 0x923f82a4af194f9b, - 0xab1c5ed5da6d8118, - 0xd807aa98a3030242, - 0x12835b0145706fbe, - 0x243185be4ee4b28c, - 0x550c7dc3d5ffb4e2, - 0x72be5d74f27b896f, - 0x80deb1fe3b1696b1, - 0x9bdc06a725c71235, - 0xc19bf174cf692694, - 0xe49b69c19ef14ad2, - 0xefbe4786384f25e3, - 0x0fc19dc68b8cd5b5, - 0x240ca1cc77ac9c65, - 0x2de92c6f592b0275, - 0x4a7484aa6ea6e483, - 0x5cb0a9dcbd41fbd4, - 0x76f988da831153b5, - 0x983e5152ee66dfab, - 0xa831c66d2db43210, - 0xb00327c898fb213f, - 0xbf597fc7beef0ee4, - 0xc6e00bf33da88fc2, - 0xd5a79147930aa725, - 0x06ca6351e003826f, - 0x142929670a0e6e70, - 0x27b70a8546d22ffc, - 0x2e1b21385c26c926, - 0x4d2c6dfc5ac42aed, - 0x53380d139d95b3df, - 0x650a73548baf63de, - 0x766a0abb3c77b2a8, - 0x81c2c92e47edaee6, - 0x92722c851482353b, - 0xa2bfe8a14cf10364, - 0xa81a664bbc423001, - 0xc24b8b70d0f89791, - 0xc76c51a30654be30, - 0xd192e819d6ef5218, - 0xd69906245565a910, - 0xf40e35855771202a, - 0x106aa07032bbd1b8, - 0x19a4c116b8d2d0c8, - 0x1e376c085141ab53, - 0x2748774cdf8eeb99, - 0x34b0bcb5e19b48a8, - 0x391c0cb3c5c95a63, - 0x4ed8aa4ae3418acb, - 0x5b9cca4f7763e373, - 0x682e6ff3d6b2b8a3, - 0x748f82ee5defb2fc, - 0x78a5636f43172f60, - 0x84c87814a1f0ab72, - 0x8cc702081a6439ec, - 0x90befffa23631e28, - 0xa4506cebde82bde9, - 0xbef9a3f7b2c67915, - 0xc67178f2e372532b, - 0xca273eceea26619c, - 0xd186b8c721c0c207, - 0xeada7dd6cde0eb1e, - 0xf57d4f7fee6ed178, - 0x06f067aa72176fba, - 0x0a637dc5a2c898a6, - 0x113f9804bef90dae, - 0x1b710b35131c471b, - 0x28db77f523047d84, - 0x32caab7b40c72493, - 0x3c9ebe0a15c9bebc, - 0x431d67c49c100d4c, - 0x4cc5d4becb3e42b6, - 0x597f299cfc657e2a, - 0x5fcb6fab3ad6faec, - 0x6c44198c4a475817, +const ( + _k = [0x428a2f98d728ae22, + 0x7137449123ef65cd, + 0xb5c0fbcfec4d3b2f, + 0xe9b5dba58189dbbc, + 0x3956c25bf348b538, + 0x59f111f1b605d019, + 0x923f82a4af194f9b, + 0xab1c5ed5da6d8118, + 0xd807aa98a3030242, + 0x12835b0145706fbe, + 0x243185be4ee4b28c, + 0x550c7dc3d5ffb4e2, + 0x72be5d74f27b896f, + 0x80deb1fe3b1696b1, + 0x9bdc06a725c71235, + 0xc19bf174cf692694, + 0xe49b69c19ef14ad2, + 0xefbe4786384f25e3, + 0x0fc19dc68b8cd5b5, + 0x240ca1cc77ac9c65, + 0x2de92c6f592b0275, + 0x4a7484aa6ea6e483, + 0x5cb0a9dcbd41fbd4, + 0x76f988da831153b5, + 0x983e5152ee66dfab, + 0xa831c66d2db43210, + 0xb00327c898fb213f, + 0xbf597fc7beef0ee4, + 0xc6e00bf33da88fc2, + 0xd5a79147930aa725, + 0x06ca6351e003826f, + 0x142929670a0e6e70, + 0x27b70a8546d22ffc, + 0x2e1b21385c26c926, + 0x4d2c6dfc5ac42aed, + 0x53380d139d95b3df, + 0x650a73548baf63de, + 0x766a0abb3c77b2a8, + 0x81c2c92e47edaee6, + 0x92722c851482353b, + 0xa2bfe8a14cf10364, + 0xa81a664bbc423001, + 0xc24b8b70d0f89791, + 0xc76c51a30654be30, + 0xd192e819d6ef5218, + 0xd69906245565a910, + 0xf40e35855771202a, + 0x106aa07032bbd1b8, + 0x19a4c116b8d2d0c8, + 0x1e376c085141ab53, + 0x2748774cdf8eeb99, + 0x34b0bcb5e19b48a8, + 0x391c0cb3c5c95a63, + 0x4ed8aa4ae3418acb, + 0x5b9cca4f7763e373, + 0x682e6ff3d6b2b8a3, + 0x748f82ee5defb2fc, + 0x78a5636f43172f60, + 0x84c87814a1f0ab72, + 0x8cc702081a6439ec, + 0x90befffa23631e28, + 0xa4506cebde82bde9, + 0xbef9a3f7b2c67915, + 0xc67178f2e372532b, + 0xca273eceea26619c, + 0xd186b8c721c0c207, + 0xeada7dd6cde0eb1e, + 0xf57d4f7fee6ed178, + 0x06f067aa72176fba, + 0x0a637dc5a2c898a6, + 0x113f9804bef90dae, + 0x1b710b35131c471b, + 0x28db77f523047d84, + 0x32caab7b40c72493, + 0x3c9ebe0a15c9bebc, + 0x431d67c49c100d4c, + 0x4cc5d4becb3e42b6, + 0x597f299cfc657e2a, + 0x5fcb6fab3ad6faec, + 0x6c44198c4a475817, ] ) fn block_generic(dig mut Digest, p_ []byte) { mut p := p_ - mut w := [u64(0)].repeat(80) - mut h0 := dig.h[0] mut h1 := dig.h[1] mut h2 := dig.h[2] @@ -109,22 +104,18 @@ fn block_generic(dig mut Digest, p_ []byte) { mut h5 := dig.h[5] mut h6 := dig.h[6] mut h7 := dig.h[7] - for p.len >= Chunk { for i := 0; i < 16; i++ { j := i * 8 - w[i] = u64(u64(u64(p[j])<<56) | u64(u64(p[j+1])<<48) | u64(u64(p[j+2])<<40) | u64(u64(p[j+3])<<32) | - u64(u64(p[j+4])<<24) | u64(u64(p[j+5])<<16) | u64(u64(p[j+6])<<8) | u64(p[j+7])) + w[i] = u64(u64(u64(p[j])<<56) | u64(u64(p[j + 1])<<48) | u64(u64(p[j + 2])<<40) | u64(u64(p[j + 3])<<32) | u64(u64(p[j + 4])<<24) | u64(u64(p[j + 5])<<16) | u64(u64(p[j + 6])<<8) | u64(p[j + 7])) } for i := 16; i < 80; i++ { - v1 := w[i-2] - t1 := bits.rotate_left_64(v1, -19) ^ bits.rotate_left_64(v1, -61) ^ (v1 >> 6) - v2 := w[i-15] - t2 := bits.rotate_left_64(v2, -1) ^ bits.rotate_left_64(v2, -8) ^ (v2 >> 7) - - w[i] = t1 + w[i-7] + t2 + w[i-16] + v1 := w[i - 2] + t1 := bits.rotate_left_64(v1, -19) ^ bits.rotate_left_64(v1, -61) ^ (v1>>6) + v2 := w[i - 15] + t2 := bits.rotate_left_64(v2, -1) ^ bits.rotate_left_64(v2, -8) ^ (v2>>7) + w[i] = t1 + w[i - 7] + t2 + w[i - 16] } - mut a := h0 mut b := h1 mut c := h2 @@ -133,11 +124,9 @@ fn block_generic(dig mut Digest, p_ []byte) { mut f := h5 mut g := h6 mut h := h7 - for i := 0; i < 80; i++ { t1 := h + (bits.rotate_left_64(e, -14) ^ bits.rotate_left_64(e, -18) ^ bits.rotate_left_64(e, -41)) + ((e & f) ^ (~e & g)) + _k[i] + w[i] t2 := (bits.rotate_left_64(a, -28) ^ bits.rotate_left_64(a, -34) ^ bits.rotate_left_64(a, -39)) + ((a & b) ^ (a & c) ^ (b & c)) - h = g g = f f = e @@ -147,7 +136,6 @@ fn block_generic(dig mut Digest, p_ []byte) { b = a a = t1 + t2 } - h0 += a h1 += b h2 += c @@ -156,14 +144,13 @@ fn block_generic(dig mut Digest, p_ []byte) { h5 += f h6 += g h7 += h - if Chunk >= p.len { p = [] - } else { + } + else { p = p[Chunk..] } } - dig.h[0] = h0 dig.h[1] = h1 dig.h[2] = h2 @@ -173,3 +160,4 @@ fn block_generic(dig mut Digest, p_ []byte) { dig.h[6] = h6 dig.h[7] = h7 } + diff --git a/vlib/encoding/binary/binary.v b/vlib/encoding/binary/binary.v index 3416b32d8c..4167f72107 100644 --- a/vlib/encoding/binary/binary.v +++ b/vlib/encoding/binary/binary.v @@ -1,10 +1,7 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module binary - - // Little Endian [inline] pub fn little_endian_endian_u16(b []byte) u16 { @@ -16,7 +13,7 @@ pub fn little_endian_endian_u16(b []byte) u16 { pub fn little_endian_put_u16(b mut []byte, v u16) { _ = b[1] // bounds check b[0] = byte(v) - b[1] = byte(v >> u16(8)) + b[1] = byte(v>>u16(8)) } [inline] @@ -29,29 +26,28 @@ pub fn little_endian_u32(b []byte) u32 { pub fn little_endian_put_u32(b mut []byte, v u32) { _ = b[3] // bounds check b[0] = byte(v) - b[1] = byte(v >> u32(8)) - b[2] = byte(v >> u32(16)) - b[3] = byte(v >> u32(24)) + b[1] = byte(v>>u32(8)) + b[2] = byte(v>>u32(16)) + b[3] = byte(v>>u32(24)) } [inline] pub fn little_endian_u64(b []byte) u64 { _ = b[7] // bounds check - return u64(b[0]) | u64(u64(b[1])<> u64(8)) - b[2] = byte(v >> u64(16)) - b[3] = byte(v >> u64(24)) - b[4] = byte(v >> u64(32)) - b[5] = byte(v >> u64(40)) - b[6] = byte(v >> u64(48)) - b[7] = byte(v >> u64(56)) + b[1] = byte(v>>u64(8)) + b[2] = byte(v>>u64(16)) + b[3] = byte(v>>u64(24)) + b[4] = byte(v>>u64(32)) + b[5] = byte(v>>u64(40)) + b[6] = byte(v>>u64(48)) + b[7] = byte(v>>u64(56)) } // Big Endian @@ -64,7 +60,7 @@ pub fn big_endian_u16(b []byte) u16 { [inline] pub fn big_endian_put_u16(b mut []byte, v u16) { _ = b[1] // bounds check - b[0] = byte(v >> u16(8)) + b[0] = byte(v>>u16(8)) b[1] = byte(v) } @@ -77,28 +73,28 @@ pub fn big_endian_u32(b []byte) u32 { [inline] pub fn big_endian_put_u32(b mut []byte, v u32) { _ = b[3] // bounds check - b[0] = byte(v >> u32(24)) - b[1] = byte(v >> u32(16)) - b[2] = byte(v >> u32(8)) + b[0] = byte(v>>u32(24)) + b[1] = byte(v>>u32(16)) + b[2] = byte(v>>u32(8)) b[3] = byte(v) } [inline] pub fn big_endian_u64(b []byte) u64 { _ = b[7] // bounds check - return u64(b[7]) | u64(u64(b[6])<> u64(56)) - b[1] = byte(v >> u64(48)) - b[2] = byte(v >> u64(40)) - b[3] = byte(v >> u64(32)) - b[4] = byte(v >> u64(24)) - b[5] = byte(v >> u64(16)) - b[6] = byte(v >> u64(8)) + b[0] = byte(v>>u64(56)) + b[1] = byte(v>>u64(48)) + b[2] = byte(v>>u64(40)) + b[3] = byte(v>>u64(32)) + b[4] = byte(v>>u64(24)) + b[5] = byte(v>>u64(16)) + b[6] = byte(v>>u64(8)) b[7] = byte(v) } + diff --git a/vlib/math/bits.v b/vlib/math/bits.v index a320973b87..f35e40691e 100644 --- a/vlib/math/bits.v +++ b/vlib/math/bits.v @@ -1,21 +1,19 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module math const ( - uvnan = 0x7FF8000000000001 - uvinf = 0x7FF0000000000000 - uvneginf = 0xFFF0000000000000 - uvone = 0x3FF0000000000000 - mask = 0x7FF - shift = 64 - 11 - 1 - bias = 1023 - sign_mask = (u64(1) << 63) + uvnan = 0x7FF8000000000001 + uvinf = 0x7FF0000000000000 + uvneginf = 0xFFF0000000000000 + uvone = 0x3FF0000000000000 + mask = 0x7FF + shift = 64 - 11 - 1 + bias = 1023 + sign_mask = (u64(1)<<63) frac_mask = ((u64(1)<= 0, negative infinity if sign < 0. pub fn inf(sign int) f64 { v := if sign >= 0 { uvinf } else { uvneginf } @@ -23,14 +21,16 @@ pub fn inf(sign int) f64 { } // nan returns an IEEE 754 ``not-a-number'' value. -pub fn nan() f64 { return f64_from_bits(uvnan) } +pub fn nan() f64 { + return f64_from_bits(uvnan) +} // is_nan reports whether f is an IEEE 754 ``not-a-number'' value. pub fn is_nan(f f64) bool { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: - // x := f64_bits(f); - // return u32(x>>shift)&mask == mask && x != uvinf && x != uvneginf + // x := f64_bits(f); + // return u32(x>>shift)&mask == mask && x != uvinf && x != uvneginf return f != f } @@ -41,8 +41,8 @@ pub fn is_nan(f f64) bool { pub fn is_inf(f f64, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: - // x := f64_bits(f); - // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; + // x := f64_bits(f); + // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; return (sign >= 0 && f > max_f64) || (sign <= 0 && f < -max_f64) } @@ -50,9 +50,10 @@ pub fn is_inf(f f64, sign int) bool { // normalize returns a normal number y and exponent exp // satisfying x == y × 2**exp. It assumes x is finite and non-zero. // pub fn normalize(x f64) (f64, int) { -// smallest_normal := 2.2250738585072014e-308 // 2**-1022 -// if abs(x) < smallest_normal { -// return x * (1 << 52), -52 -// } -// return x, 0 +// smallest_normal := 2.2250738585072014e-308 // 2**-1022 +// if abs(x) < smallest_normal { +// return x * (1 << 52), -52 // } +// return x, 0 +// } + diff --git a/vlib/math/bits/bits.v b/vlib/math/bits/bits.v index a8126b701b..d873c80f5d 100644 --- a/vlib/math/bits/bits.v +++ b/vlib/math/bits/bits.v @@ -1,49 +1,51 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module bits -const( - // See http://supertech.csail.mit.edu/papers/debruijn.pdf +const ( +// See http://supertech.csail.mit.edu/papers/debruijn.pdf de_bruijn32 = u32(0x077CB531) - de_bruijn32tab = [ - byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, - 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, + de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, ] de_bruijn64 = u64(0x03f79d71b4ca8b09) - de_bruijn64tab = [ - byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, - 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, - 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, - 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, + de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, + 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, + 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, + 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, ] ) -const( +const ( m0 = 0x5555555555555555 // 01010101 ... m1 = 0x3333333333333333 // 00110011 ... m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... m3 = 0x00ff00ff00ff00ff // etc. m4 = 0x0000ffff0000ffff ) - // --- LeadingZeros --- - // leading_zeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. -pub fn leading_zeros8(x byte) int { return 8 - len8(x) } +pub fn leading_zeros8(x byte) int { + return 8 - len8(x) +} // leading_zeros16 returns the number of leading zero bits in x; the result is 16 for x == 0. -pub fn leading_zeros16(x u16) int { return 16 - len16(x) } +pub fn leading_zeros16(x u16) int { + return 16 - len16(x) +} // leading_zeros32 returns the number of leading zero bits in x; the result is 32 for x == 0. -pub fn leading_zeros32(x u32) int { return 32 - len32(x) } +pub fn leading_zeros32(x u32) int { + return 32 - len32(x) +} // leading_zeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. -pub fn leading_zeros64(x u64) int { return 64 - len64(x) } +pub fn leading_zeros64(x u64) int { + return 64 - len64(x) +} // --- TrailingZeros --- - // trailing_zeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. pub fn trailing_zeros8(x byte) int { return int(ntz8_tab[x]) @@ -55,7 +57,7 @@ pub fn trailing_zeros16(x u16) int { return 16 } // see comment in trailing_zeros64 - return int(de_bruijn32tab[u32(x&-x)*de_bruijn32>>(32-5)]) + return int(de_bruijn32tab[u32(x & -x) * de_bruijn32>>(32 - 5)]) } // trailing_zeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. @@ -64,7 +66,7 @@ pub fn trailing_zeros32(x u32) int { return 32 } // see comment in trailing_zeros64 - return int(de_bruijn32tab[(x&-x)*de_bruijn32>>(32-5)]) + return int(de_bruijn32tab[(x & -x) * de_bruijn32>>(32 - 5)]) } // trailing_zeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. @@ -83,11 +85,10 @@ pub fn trailing_zeros64(x u64) int { // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) - return int(de_bruijn64tab[(x&-x)*de_bruijn64>>(64-6)]) + return int(de_bruijn64tab[(x & -x) * de_bruijn64>>(64 - 6)]) } // --- OnesCount --- - // ones_count8 returns the number of one bits ("population count") in x. pub fn ones_count8(x byte) int { return int(pop8_tab[x]) @@ -95,12 +96,12 @@ pub fn ones_count8(x byte) int { // ones_count16 returns the number of one bits ("population count") in x. pub fn ones_count16(x u16) int { - return int(pop8_tab[x>>8] + pop8_tab[x&u16(0xff)]) + return int(pop8_tab[x>>8] + pop8_tab[x & u16(0xff)]) } // ones_count32 returns the number of one bits ("population count") in x. pub fn ones_count32(x u32) int { - return int(pop8_tab[x>>24] + pop8_tab[x>>16&0xff] + pop8_tab[x>>8&0xff] + pop8_tab[x&u32(0xff)]) + return int(pop8_tab[x>>24] + pop8_tab[x>>16 & 0xff] + pop8_tab[x>>8 & 0xff] + pop8_tab[x & u32(0xff)]) } // ones_count64 returns the number of one bits ("population count") in x. @@ -109,13 +110,13 @@ pub fn ones_count64(x u64) int { // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // - // x = x>>1&(m0&m) + x&(m0&m) - // x = x>>2&(m1&m) + x&(m1&m) - // x = x>>4&(m2&m) + x&(m2&m) - // x = x>>8&(m3&m) + x&(m3&m) - // x = x>>16&(m4&m) + x&(m4&m) - // x = x>>32&(m5&m) + x&(m5&m) - // return int(x) + // x = x>>1&(m0&m) + x&(m0&m) + // x = x>>2&(m1&m) + x&(m1&m) + // x = x>>4&(m2&m) + x&(m2&m) + // x = x>>8&(m3&m) + x&(m3&m) + // x = x>>16&(m4&m) + x&(m4&m) + // x = x>>32&(m5&m) + x&(m5&m) + // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next @@ -125,17 +126,16 @@ pub fn ones_count64(x u64) int { // more, but it saves at best one instruction, so we leave // it alone for clarity. m := u64(1<<64) - 1 - mut y := u64(x>>u64(1)&(m0&m)) + u64(x&(m0&m)) - y = u64(y>>u64(2)&(m1&m)) + u64(y&(m1&m)) + mut y := u64(x>>u64(1) & (m0 & m)) + u64(x & (m0 & m)) + y = u64(y>>u64(2) & (m1 & m)) + u64(y & (m1 & m)) y = u64(u64(y>>4) + y) & (m2 & m) - y += y >> 8 - y += y >> 16 - y += y >> 32 + y += y>>8 + y += y>>16 + y += y>>32 return int(y) & ((1<<7) - 1) } // --- RotateLeft --- - // rotate_left_8 returns the value of x rotated left by (k mod 8) bits. // To rotate x right by k bits, call rotate_left_8(x, -k). // @@ -144,7 +144,7 @@ pub fn ones_count64(x u64) int { pub fn rotate_left_8(x byte, k int) byte { n := byte(8) s := byte(k) & byte(n - byte(1)) - return byte((x<>(n-s))) + return byte((x<>(n - s))) } // rotate_left_16 returns the value of x rotated left by (k mod 16) bits. @@ -155,7 +155,7 @@ pub fn rotate_left_8(x byte, k int) byte { pub fn rotate_left_16(x u16, k int) u16 { n := u16(16) s := u16(k) & (n - u16(1)) - return u16((x<>(n-s))) + return u16((x<>(n - s))) } // rotate_left_32 returns the value of x rotated left by (k mod 32) bits. @@ -166,7 +166,7 @@ pub fn rotate_left_16(x u16, k int) u16 { pub fn rotate_left_32(x u32, k int) u32 { n := u32(32) s := u32(k) & (n - u32(1)) - return u32(u32(x<>(n-s))) + return u32(u32(x<>(n - s))) } // rotate_left_64 returns the value of x rotated left by (k mod 64) bits. @@ -177,11 +177,10 @@ pub fn rotate_left_32(x u32, k int) u32 { pub fn rotate_left_64(x u64, k int) u64 { n := u64(64) s := u64(k) & (n - u64(1)) - return u64(u64(x<>(n-s))) + return u64(u64(x<>(n - s))) } // --- Reverse --- - // reverse8 returns the value of x with its bits in reversed order. [inline] pub fn reverse8(x byte) byte { @@ -191,16 +190,16 @@ pub fn reverse8(x byte) byte { // reverse16 returns the value of x with its bits in reversed order. [inline] pub fn reverse16(x u16) u16 { - return u16(rev8_tab[x>>8]) | u16(u16(rev8_tab[x&u16(0xff)])<<8) + return u16(rev8_tab[x>>8]) | u16(u16(rev8_tab[x & u16(0xff)])<<8) } // reverse32 returns the value of x with its bits in reversed order. [inline] pub fn reverse32(x u32) u32 { m := u64(1<<32) - 1 - mut y := u32(x>>u32(1)&u32(m0&m) | u32(u32(x&u32(m0&m))<<1)) - y = u32(y>>u32(2)&u32(m1&m) | u32(u32(y&u32(m1&m))<>u32(4)&u32(m2&m) | u32(u32(y&u32(m2&m))<>u32(1) & u32(m0 & m) | u32(u32(x & u32(m0 & m))<<1)) + y = u32(y>>u32(2) & u32(m1 & m) | u32(u32(y & u32(m1 & m))<>u32(4) & u32(m2 & m) | u32(u32(y & u32(m2 & m))<>u64(1)&(m0&m) | u64(u64(x&(m0&m))<<1)) - y = u64(y>>u64(2)&(m1&m) | u64(u64(y&(m1&m))<<2)) - y = u64(y>>u64(4)&(m2&m) | u64(u64(y&(m2&m))<<4)) + mut y := u64(x>>u64(1) & (m0 & m) | u64(u64(x & (m0 & m))<<1)) + y = u64(y>>u64(2) & (m1 & m) | u64(u64(y & (m1 & m))<<2)) + y = u64(y>>u64(4) & (m2 & m) | u64(u64(y & (m2 & m))<<4)) return reverse_bytes64(y) } // --- ReverseBytes --- - // reverse_bytes16 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. @@ -230,7 +228,7 @@ pub fn reverse_bytes16(x u16) u16 { [inline] pub fn reverse_bytes32(x u32) u32 { m := u64(1<<32) - 1 - y := u32(x>>u32(8)&u32(m3&m) | u32(u32(x&u32(m3&m))<>u32(8) & u32(m3 & m) | u32(u32(x & u32(m3 & m))<>16) | u32(y<<16) } @@ -240,13 +238,12 @@ pub fn reverse_bytes32(x u32) u32 { [inline] pub fn reverse_bytes64(x u64) u64 { m := u64(1<<64) - 1 - mut y := u64(x>>u64(8)&(m3&m) | u64(u64(x&(m3&m))<>u64(16)&(m4&m) | u64(u64(y&(m4&m))<>u64(8) & (m3 & m) | u64(u64(x & (m3 & m))<>u64(16) & (m4 & m) | u64(u64(y & (m4 & m))<>32) | u64(y<<32) } // --- Len --- - // len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len8(x byte) int { return int(len8_tab[x]) @@ -296,3 +293,4 @@ pub fn len64(x u64) int { } return n + int(len8_tab[y]) } + diff --git a/vlib/math/bits/bits_tables.v b/vlib/math/bits/bits_tables.v index 5953d9f355..57487d2f18 100644 --- a/vlib/math/bits/bits_tables.v +++ b/vlib/math/bits/bits_tables.v @@ -1,80 +1,76 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module bits -const( - ntz8_tab = [ - byte(0x08), 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x07, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, - ] - pop8_tab = [ - byte(0x00), 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, - 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, - 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, - 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, - 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, - 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, - 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, - 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, 0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08, - ] - rev8_tab = [ - byte(0x00), 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, - 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, - 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, - 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, - 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, - 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, - 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, - 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, - 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, - 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, - 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, - 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, - 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, - 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, - 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, - 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, - ] - len8_tab = [ - byte(0x00), 0x01, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, - 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, - 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, - 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, - 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, - 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, - 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, - 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, - ] +const ( + ntz8_tab = [byte(0x08), 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x07, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x06, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x05, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, + ] + pop8_tab = [byte(0x00), 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, + 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, + 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, + 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, + 0x02, 0x03, 0x03, 0x04, 0x03, 0x04, 0x04, 0x05, 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, + 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, + 0x03, 0x04, 0x04, 0x05, 0x04, 0x05, 0x05, 0x06, 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, + 0x04, 0x05, 0x05, 0x06, 0x05, 0x06, 0x06, 0x07, 0x05, 0x06, 0x06, 0x07, 0x06, 0x07, 0x07, 0x08, + ] + rev8_tab = [byte(0x00), 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, + 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, + 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, + 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, + 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, + 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, + 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, + 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, + 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, + 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, + 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, + 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, + 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, + 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, + 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, + 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, + ] + len8_tab = [byte(0x00), 0x01, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, + 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, + 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, + ] ) + diff --git a/vlib/math/const.v b/vlib/math/const.v index 5da1548eeb..38b9fbd293 100644 --- a/vlib/math/const.v +++ b/vlib/math/const.v @@ -1,42 +1,36 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module math pub const ( - e = 2.71828182845904523536028747135266249775724709369995957496696763 - pi = 3.14159265358979323846264338327950288419716939937510582097494459 + e = 2.71828182845904523536028747135266249775724709369995957496696763 + pi = 3.14159265358979323846264338327950288419716939937510582097494459 phi = 1.61803398874989484820458683436563811772030917980576286213544862 tau = 6.28318530717958647692528676655900576839433879875021164194988918 - - sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 - sqrt_e = 1.64872127070012814684865078781416357165377610071014801157507931 - sqrt_pi = 1.77245385090551602729816748334114518279754945612238712821380779 + sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 + sqrt_e = 1.64872127070012814684865078781416357165377610071014801157507931 + sqrt_pi = 1.77245385090551602729816748334114518279754945612238712821380779 sqrt_tau = 2.50662827463100050241576528481104525300698674060993831662992357 sqrt_phi = 1.27201964951406896425242246173749149171560804184009624861664038 - - ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 - log2_e = 1.0 / ln2 - ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 + ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 + log2_e = 1.0 / ln2 + ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 log10_e = 1.0 / ln10 ) - // Floating-point limit values // max is the largest finite value representable by the type. // smallest_non_zero is the smallest positive, non-zero value representable by the type. pub const ( - max_f32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23 + max_f32 = 3.40282346638528859811704183484516925440e+38 // 2**127 * (2**24 - 1) / 2**23 smallest_non_zero_f32 = 1.401298464324817070923729583289916131280e-45 // 1 / 2**(127 - 1 + 23) - - max_f64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52 + max_f64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52 smallest_non_zero_f64 = 4.940656458412465441765687928682213723651e-324 // 1 / 2**(1023 - 1 + 52) ) - // Integer limit values pub const ( - max_i8 = 127 - min_i8 = -128 + max_i8 = 127 + min_i8 = -128 max_i16 = 32767 min_i16 = -32768 max_i32 = 2147483647 @@ -46,8 +40,9 @@ pub const ( // consecutive subtraction by 1 min_i64 = -9223372036854775807 - 1 max_i64 = 9223372036854775807 - max_u8 = 255 + max_u8 = 255 max_u16 = 65535 max_u32 = 4294967295 max_u64 = 18446744073709551615 ) + diff --git a/vlib/math/fact_tables.v b/vlib/math/fact_tables.v index 80472072bc..a6e3d5fdeb 100644 --- a/vlib/math/fact_tables.v +++ b/vlib/math/fact_tables.v @@ -1,177 +1,177 @@ module math -const( - factorials = [ - f64(1.000000000000000000000e+0), /* 0! */ - 1.000000000000000000000e+0, /* 1! */ - 2.000000000000000000000e+0, /* 2! */ - 6.000000000000000000000e+0, /* 3! */ - 2.400000000000000000000e+1, /* 4! */ - 1.200000000000000000000e+2, /* 5! */ - 7.200000000000000000000e+2, /* 6! */ - 5.040000000000000000000e+3, /* 7! */ - 4.032000000000000000000e+4, /* 8! */ - 3.628800000000000000000e+5, /* 9! */ - 3.628800000000000000000e+6, /* 10! */ - 3.991680000000000000000e+7, /* 11! */ - 4.790016000000000000000e+8, /* 12! */ - 6.227020800000000000000e+9, /* 13! */ - 8.717829120000000000000e+10, /* 14! */ - 1.307674368000000000000e+12, /* 15! */ - 2.092278988800000000000e+13, /* 16! */ - 3.556874280960000000000e+14, /* 17! */ - 6.402373705728000000000e+15, /* 18! */ - 1.216451004088320000000e+17, /* 19! */ - 2.432902008176640000000e+18, /* 20! */ - 5.109094217170944000000e+19, /* 21! */ - 1.124000727777607680000e+21, /* 22! */ - 2.585201673888497664000e+22, /* 23! */ - 6.204484017332394393600e+23, /* 24! */ - 1.551121004333098598400e+25, /* 25! */ - 4.032914611266056355840e+26, /* 26! */ - 1.088886945041835216077e+28, /* 27! */ - 3.048883446117138605015e+29, /* 28! */ - 8.841761993739701954544e+30, /* 29! */ - 2.652528598121910586363e+32, /* 30! */ - 8.222838654177922817726e+33, /* 31! */ - 2.631308369336935301672e+35, /* 32! */ - 8.683317618811886495518e+36, /* 33! */ - 2.952327990396041408476e+38, /* 34! */ - 1.033314796638614492967e+40, /* 35! */ - 3.719933267899012174680e+41, /* 36! */ - 1.376375309122634504632e+43, /* 37! */ - 5.230226174666011117600e+44, /* 38! */ - 2.039788208119744335864e+46, /* 39! */ - 8.159152832478977343456e+47, /* 40! */ - 3.345252661316380710817e+49, /* 41! */ - 1.405006117752879898543e+51, /* 42! */ - 6.041526306337383563736e+52, /* 43! */ - 2.658271574788448768044e+54, /* 44! */ - 1.196222208654801945620e+56, /* 45! */ - 5.502622159812088949850e+57, /* 46! */ - 2.586232415111681806430e+59, /* 47! */ - 1.241391559253607267086e+61, /* 48! */ - 6.082818640342675608723e+62, /* 49! */ - 3.041409320171337804361e+64, /* 50! */ - 1.551118753287382280224e+66, /* 51! */ - 8.065817517094387857166e+67, /* 52! */ - 4.274883284060025564298e+69, /* 53! */ - 2.308436973392413804721e+71, /* 54! */ - 1.269640335365827592597e+73, /* 55! */ - 7.109985878048634518540e+74, /* 56! */ - 4.052691950487721675568e+76, /* 57! */ - 2.350561331282878571829e+78, /* 58! */ - 1.386831185456898357379e+80, /* 59! */ - 8.320987112741390144276e+81, /* 60! */ - 5.075802138772247988009e+83, /* 61! */ - 3.146997326038793752565e+85, /* 62! */ - 1.982608315404440064116e+87, /* 63! */ - 1.268869321858841641034e+89, /* 64! */ - 8.247650592082470666723e+90, /* 65! */ - 5.443449390774430640037e+92, /* 66! */ - 3.647111091818868528825e+94, /* 67! */ - 2.480035542436830599601e+96, /* 68! */ - 1.711224524281413113725e+98, /* 69! */ - 1.197857166996989179607e+100, /* 70! */ - 8.504785885678623175212e+101, /* 71! */ - 6.123445837688608686152e+103, /* 72! */ - 4.470115461512684340891e+105, /* 73! */ - 3.307885441519386412260e+107, /* 74! */ - 2.480914081139539809195e+109, /* 75! */ - 1.885494701666050254988e+111, /* 76! */ - 1.451830920282858696341e+113, /* 77! */ - 1.132428117820629783146e+115, /* 78! */ - 8.946182130782975286851e+116, /* 79! */ - 7.156945704626380229481e+118, /* 80! */ - 5.797126020747367985880e+120, /* 81! */ - 4.753643337012841748421e+122, /* 82! */ - 3.945523969720658651190e+124, /* 83! */ - 3.314240134565353266999e+126, /* 84! */ - 2.817104114380550276949e+128, /* 85! */ - 2.422709538367273238177e+130, /* 86! */ - 2.107757298379527717214e+132, /* 87! */ - 1.854826422573984391148e+134, /* 88! */ - 1.650795516090846108122e+136, /* 89! */ - 1.485715964481761497310e+138, /* 90! */ - 1.352001527678402962552e+140, /* 91! */ - 1.243841405464130725548e+142, /* 92! */ - 1.156772507081641574759e+144, /* 93! */ - 1.087366156656743080274e+146, /* 94! */ - 1.032997848823905926260e+148, /* 95! */ - 9.916779348709496892096e+149, /* 96! */ - 9.619275968248211985333e+151, /* 97! */ - 9.426890448883247745626e+153, /* 98! */ - 9.332621544394415268170e+155, /* 99! */ - 9.332621544394415268170e+157, /* 100! */ - 9.425947759838359420852e+159, /* 101! */ - 9.614466715035126609269e+161, /* 102! */ - 9.902900716486180407547e+163, /* 103! */ - 1.029901674514562762385e+166, /* 104! */ - 1.081396758240290900504e+168, /* 105! */ - 1.146280563734708354534e+170, /* 106! */ - 1.226520203196137939352e+172, /* 107! */ - 1.324641819451828974500e+174, /* 108! */ - 1.443859583202493582205e+176, /* 109! */ - 1.588245541522742940425e+178, /* 110! */ - 1.762952551090244663872e+180, /* 111! */ - 1.974506857221074023537e+182, /* 112! */ - 2.231192748659813646597e+184, /* 113! */ - 2.543559733472187557120e+186, /* 114! */ - 2.925093693493015690688e+188, /* 115! */ - 3.393108684451898201198e+190, /* 116! */ - 3.969937160808720895402e+192, /* 117! */ - 4.684525849754290656574e+194, /* 118! */ - 5.574585761207605881323e+196, /* 119! */ - 6.689502913449127057588e+198, /* 120! */ - 8.094298525273443739682e+200, /* 121! */ - 9.875044200833601362412e+202, /* 122! */ - 1.214630436702532967577e+205, /* 123! */ - 1.506141741511140879795e+207, /* 124! */ - 1.882677176888926099744e+209, /* 125! */ - 2.372173242880046885677e+211, /* 126! */ - 3.012660018457659544810e+213, /* 127! */ - 3.856204823625804217357e+215, /* 128! */ - 4.974504222477287440390e+217, /* 129! */ - 6.466855489220473672507e+219, /* 130! */ - 8.471580690878820510985e+221, /* 131! */ - 1.118248651196004307450e+224, /* 132! */ - 1.487270706090685728908e+226, /* 133! */ - 1.992942746161518876737e+228, /* 134! */ - 2.690472707318050483595e+230, /* 135! */ - 3.659042881952548657690e+232, /* 136! */ - 5.012888748274991661035e+234, /* 137! */ - 6.917786472619488492228e+236, /* 138! */ - 9.615723196941089004197e+238, /* 139! */ - 1.346201247571752460588e+241, /* 140! */ - 1.898143759076170969429e+243, /* 141! */ - 2.695364137888162776589e+245, /* 142! */ - 3.854370717180072770522e+247, /* 143! */ - 5.550293832739304789551e+249, /* 144! */ - 8.047926057471991944849e+251, /* 145! */ - 1.174997204390910823948e+254, /* 146! */ - 1.727245890454638911203e+256, /* 147! */ - 2.556323917872865588581e+258, /* 148! */ - 3.808922637630569726986e+260, /* 149! */ - 5.713383956445854590479e+262, /* 150! */ - 8.627209774233240431623e+264, /* 151! */ - 1.311335885683452545607e+267, /* 152! */ - 2.006343905095682394778e+269, /* 153! */ - 3.089769613847350887959e+271, /* 154! */ - 4.789142901463393876336e+273, /* 155! */ - 7.471062926282894447084e+275, /* 156! */ - 1.172956879426414428192e+278, /* 157! */ - 1.853271869493734796544e+280, /* 158! */ - 2.946702272495038326504e+282, /* 159! */ - 4.714723635992061322407e+284, /* 160! */ - 7.590705053947218729075e+286, /* 161! */ - 1.229694218739449434110e+289, /* 162! */ - 2.004401576545302577600e+291, /* 163! */ - 3.287218585534296227263e+293, /* 164! */ - 5.423910666131588774984e+295, /* 165! */ - 9.003691705778437366474e+297, /* 166! */ - 1.503616514864999040201e+300, /* 167! */ - 2.526075744973198387538e+302, /* 168! */ - 4.269068009004705274939e+304, /* 169! */ - 7.257415615307998967397e+306 /* 170! */ +const ( + factorials = [f64(1.000000000000000000000e+0),/* 0! */ + 1.000000000000000000000e+0,/* 1! */ + 2.000000000000000000000e+0,/* 2! */ + 6.000000000000000000000e+0,/* 3! */ + 2.400000000000000000000e+1,/* 4! */ + 1.200000000000000000000e+2,/* 5! */ + 7.200000000000000000000e+2,/* 6! */ + 5.040000000000000000000e+3,/* 7! */ + 4.032000000000000000000e+4,/* 8! */ + 3.628800000000000000000e+5,/* 9! */ + 3.628800000000000000000e+6,/* 10! */ + 3.991680000000000000000e+7,/* 11! */ + 4.790016000000000000000e+8,/* 12! */ + 6.227020800000000000000e+9,/* 13! */ + 8.717829120000000000000e+10,/* 14! */ + 1.307674368000000000000e+12,/* 15! */ + 2.092278988800000000000e+13,/* 16! */ + 3.556874280960000000000e+14,/* 17! */ + 6.402373705728000000000e+15,/* 18! */ + 1.216451004088320000000e+17,/* 19! */ + 2.432902008176640000000e+18,/* 20! */ + 5.109094217170944000000e+19,/* 21! */ + 1.124000727777607680000e+21,/* 22! */ + 2.585201673888497664000e+22,/* 23! */ + 6.204484017332394393600e+23,/* 24! */ + 1.551121004333098598400e+25,/* 25! */ + 4.032914611266056355840e+26,/* 26! */ + 1.088886945041835216077e+28,/* 27! */ + 3.048883446117138605015e+29,/* 28! */ + 8.841761993739701954544e+30,/* 29! */ + 2.652528598121910586363e+32,/* 30! */ + 8.222838654177922817726e+33,/* 31! */ + 2.631308369336935301672e+35,/* 32! */ + 8.683317618811886495518e+36,/* 33! */ + 2.952327990396041408476e+38,/* 34! */ + 1.033314796638614492967e+40,/* 35! */ + 3.719933267899012174680e+41,/* 36! */ + 1.376375309122634504632e+43,/* 37! */ + 5.230226174666011117600e+44,/* 38! */ + 2.039788208119744335864e+46,/* 39! */ + 8.159152832478977343456e+47,/* 40! */ + 3.345252661316380710817e+49,/* 41! */ + 1.405006117752879898543e+51,/* 42! */ + 6.041526306337383563736e+52,/* 43! */ + 2.658271574788448768044e+54,/* 44! */ + 1.196222208654801945620e+56,/* 45! */ + 5.502622159812088949850e+57,/* 46! */ + 2.586232415111681806430e+59,/* 47! */ + 1.241391559253607267086e+61,/* 48! */ + 6.082818640342675608723e+62,/* 49! */ + 3.041409320171337804361e+64,/* 50! */ + 1.551118753287382280224e+66,/* 51! */ + 8.065817517094387857166e+67,/* 52! */ + 4.274883284060025564298e+69,/* 53! */ + 2.308436973392413804721e+71,/* 54! */ + 1.269640335365827592597e+73,/* 55! */ + 7.109985878048634518540e+74,/* 56! */ + 4.052691950487721675568e+76,/* 57! */ + 2.350561331282878571829e+78,/* 58! */ + 1.386831185456898357379e+80,/* 59! */ + 8.320987112741390144276e+81,/* 60! */ + 5.075802138772247988009e+83,/* 61! */ + 3.146997326038793752565e+85,/* 62! */ + 1.982608315404440064116e+87,/* 63! */ + 1.268869321858841641034e+89,/* 64! */ + 8.247650592082470666723e+90,/* 65! */ + 5.443449390774430640037e+92,/* 66! */ + 3.647111091818868528825e+94,/* 67! */ + 2.480035542436830599601e+96,/* 68! */ + 1.711224524281413113725e+98,/* 69! */ + 1.197857166996989179607e+100,/* 70! */ + 8.504785885678623175212e+101,/* 71! */ + 6.123445837688608686152e+103,/* 72! */ + 4.470115461512684340891e+105,/* 73! */ + 3.307885441519386412260e+107,/* 74! */ + 2.480914081139539809195e+109,/* 75! */ + 1.885494701666050254988e+111,/* 76! */ + 1.451830920282858696341e+113,/* 77! */ + 1.132428117820629783146e+115,/* 78! */ + 8.946182130782975286851e+116,/* 79! */ + 7.156945704626380229481e+118,/* 80! */ + 5.797126020747367985880e+120,/* 81! */ + 4.753643337012841748421e+122,/* 82! */ + 3.945523969720658651190e+124,/* 83! */ + 3.314240134565353266999e+126,/* 84! */ + 2.817104114380550276949e+128,/* 85! */ + 2.422709538367273238177e+130,/* 86! */ + 2.107757298379527717214e+132,/* 87! */ + 1.854826422573984391148e+134,/* 88! */ + 1.650795516090846108122e+136,/* 89! */ + 1.485715964481761497310e+138,/* 90! */ + 1.352001527678402962552e+140,/* 91! */ + 1.243841405464130725548e+142,/* 92! */ + 1.156772507081641574759e+144,/* 93! */ + 1.087366156656743080274e+146,/* 94! */ + 1.032997848823905926260e+148,/* 95! */ + 9.916779348709496892096e+149,/* 96! */ + 9.619275968248211985333e+151,/* 97! */ + 9.426890448883247745626e+153,/* 98! */ + 9.332621544394415268170e+155,/* 99! */ + 9.332621544394415268170e+157,/* 100! */ + 9.425947759838359420852e+159,/* 101! */ + 9.614466715035126609269e+161,/* 102! */ + 9.902900716486180407547e+163,/* 103! */ + 1.029901674514562762385e+166,/* 104! */ + 1.081396758240290900504e+168,/* 105! */ + 1.146280563734708354534e+170,/* 106! */ + 1.226520203196137939352e+172,/* 107! */ + 1.324641819451828974500e+174,/* 108! */ + 1.443859583202493582205e+176,/* 109! */ + 1.588245541522742940425e+178,/* 110! */ + 1.762952551090244663872e+180,/* 111! */ + 1.974506857221074023537e+182,/* 112! */ + 2.231192748659813646597e+184,/* 113! */ + 2.543559733472187557120e+186,/* 114! */ + 2.925093693493015690688e+188,/* 115! */ + 3.393108684451898201198e+190,/* 116! */ + 3.969937160808720895402e+192,/* 117! */ + 4.684525849754290656574e+194,/* 118! */ + 5.574585761207605881323e+196,/* 119! */ + 6.689502913449127057588e+198,/* 120! */ + 8.094298525273443739682e+200,/* 121! */ + 9.875044200833601362412e+202,/* 122! */ + 1.214630436702532967577e+205,/* 123! */ + 1.506141741511140879795e+207,/* 124! */ + 1.882677176888926099744e+209,/* 125! */ + 2.372173242880046885677e+211,/* 126! */ + 3.012660018457659544810e+213,/* 127! */ + 3.856204823625804217357e+215,/* 128! */ + 4.974504222477287440390e+217,/* 129! */ + 6.466855489220473672507e+219,/* 130! */ + 8.471580690878820510985e+221,/* 131! */ + 1.118248651196004307450e+224,/* 132! */ + 1.487270706090685728908e+226,/* 133! */ + 1.992942746161518876737e+228,/* 134! */ + 2.690472707318050483595e+230,/* 135! */ + 3.659042881952548657690e+232,/* 136! */ + 5.012888748274991661035e+234,/* 137! */ + 6.917786472619488492228e+236,/* 138! */ + 9.615723196941089004197e+238,/* 139! */ + 1.346201247571752460588e+241,/* 140! */ + 1.898143759076170969429e+243,/* 141! */ + 2.695364137888162776589e+245,/* 142! */ + 3.854370717180072770522e+247,/* 143! */ + 5.550293832739304789551e+249,/* 144! */ + 8.047926057471991944849e+251,/* 145! */ + 1.174997204390910823948e+254,/* 146! */ + 1.727245890454638911203e+256,/* 147! */ + 2.556323917872865588581e+258,/* 148! */ + 3.808922637630569726986e+260,/* 149! */ + 5.713383956445854590479e+262,/* 150! */ + 8.627209774233240431623e+264,/* 151! */ + 1.311335885683452545607e+267,/* 152! */ + 2.006343905095682394778e+269,/* 153! */ + 3.089769613847350887959e+271,/* 154! */ + 4.789142901463393876336e+273,/* 155! */ + 7.471062926282894447084e+275,/* 156! */ + 1.172956879426414428192e+278,/* 157! */ + 1.853271869493734796544e+280,/* 158! */ + 2.946702272495038326504e+282,/* 159! */ + 4.714723635992061322407e+284,/* 160! */ + 7.590705053947218729075e+286,/* 161! */ + 1.229694218739449434110e+289,/* 162! */ + 2.004401576545302577600e+291,/* 163! */ + 3.287218585534296227263e+293,/* 164! */ + 5.423910666131588774984e+295,/* 165! */ + 9.003691705778437366474e+297,/* 166! */ + 1.503616514864999040201e+300,/* 167! */ + 2.526075744973198387538e+302,/* 168! */ + 4.269068009004705274939e+304,/* 169! */ + 7.257415615307998967397e+306/* 170! */ ] ) + diff --git a/vlib/math/math.v b/vlib/math/math.v index b74dc95597..50d20c1a4a 100644 --- a/vlib/math/math.v +++ b/vlib/math/math.v @@ -1,46 +1,97 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module math #include - fn C.acos(x f64) f64 + + fn C.asin(x f64) f64 + + fn C.atan(x f64) f64 + + fn C.atan2(y f64, x f64) f64 + + fn C.cbrt(x f64) f64 + + fn C.ceil(x f64) f64 + + fn C.cos(x f64) f64 + + fn C.cosh(x f64) f64 + + fn C.erf(x f64) f64 + + fn C.erfc(x f64) f64 + + fn C.exp(x f64) f64 + + fn C.exp2(x f64) f64 + + fn C.fabs(x f64) f64 + + fn C.floor(x f64) f64 + + fn C.fmod(x f64, y f64) f64 + + fn C.hypot(x f64, y f64) f64 + + fn C.log(x f64) f64 + + fn C.log2(x f64) f64 + + fn C.log10(x f64) f64 + + fn C.lgamma(x f64) f64 + + fn C.pow(x f64, y f64) f64 + + fn C.round(x f64) f64 + + fn C.sin(x f64) f64 + + fn C.sinh(x f64) f64 + + fn C.sqrt(x f64) f64 + + fn C.tgamma(x f64) f64 + + fn C.tan(x f64) f64 + + fn C.tanh(x f64) f64 + + fn C.trunc(x f64) f64 - - // NOTE // When adding a new function, please make sure it's in the right place. // All functions are sorted alphabetically. - // Returns the absolute value. pub fn abs(a f64) f64 { return C.fabs(a) @@ -133,16 +184,13 @@ pub fn exp2(a f64) f64 { // factorial calculates the factorial of the provided value. pub fn factorial(n f64) f64 { // For a large postive argument (n >= factorials.len) return max_f64 - if n >= factorials.len { - return max_f64 + return max_f64 } - // Otherwise return n!. if n == f64(i64(n)) && n >= 0.0 { return factorials[i64(n)] } - return gamma(n + 1.0) } @@ -268,6 +316,7 @@ pub fn sinh(a f64) f64 { pub fn sqrt(a f64) f64 { return C.sqrt(a) } + // tan calculates tangent. pub fn tan(a f64) f64 { return C.tan(a) @@ -283,3 +332,4 @@ pub fn tanh(a f64) f64 { pub fn trunc(a f64) f64 { return C.trunc(a) } + diff --git a/vlib/math/unsafe.v b/vlib/math/unsafe.v index b45e45f344..550b20405f 100644 --- a/vlib/math/unsafe.v +++ b/vlib/math/unsafe.v @@ -1,9 +1,7 @@ // Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. - module math - // f32_bits returns the IEEE 754 binary representation of f, // with the sign bit of f and the result in the same bit position. // f32_bits(f32_from_bits(x)) == x. @@ -37,3 +35,4 @@ pub fn f64_from_bits(b u64) f64 { p := *f64(&b) return *p } +