mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
map: new memory layout and map.get2()
This commit is contained in:
parent
c3d7c57096
commit
bd0548548a
@ -9,6 +9,52 @@ import (
|
||||
hash.wyhash
|
||||
)
|
||||
|
||||
/*
|
||||
This is a very fast hashmap implementation. It has several properties that in
|
||||
combination makes it very fast. Here is a short explanation of each property.
|
||||
After reading this you should have a basic understanding of how it works:
|
||||
|
||||
1. |Hash-function (Wyhash)|. Wyhash is the fastest hash-function passing SMHash-
|
||||
er, so it was an easy choice.
|
||||
|
||||
2. |Open addressing (Robin Hood Hashing)|. With this method a hash collision is
|
||||
resolved by probing. As opposed to linear probing, Robin Hood hashing has a sim-
|
||||
ple but clever twist: As new keys are inserted, old keys are shifted around in a
|
||||
way such that all keys stay reasonably close to the slot they originally hash to.
|
||||
|
||||
3. |Memory layout|. Key-value pairs are stored in a `DenseArray`, with an avera-
|
||||
ge of roughly 6.25% unused memory, as opposed to most other dynamic array imple-
|
||||
mentations with a growth factor of 1.5 or 2. The key-values keep their index in
|
||||
the array - they are not probed. Instead, this implementation uses another array
|
||||
"metas" storing "metas" (meta-data). Each Key-value has a corresponding meta. A
|
||||
meta stores a reference to its key-value, and its index in "metas" is determined
|
||||
by the hash of the key and probing. A meta also stores bits from the hash (for
|
||||
faster rehashing etc.) and how far away it is from the index it was originally
|
||||
hashed to (probe_count). probe_count is 0 if empty, 1 if not probed, 2 if probed
|
||||
by 1.
|
||||
|
||||
meta (64 bit) = kv_index (32 bit) | probe_count (8 bits) | hashbits (24 bits)
|
||||
metas = [meta, 0, meta, 0, meta, meta, meta, 0, ...]
|
||||
key_values = [kv, kv, kv, kv, kv, ...]
|
||||
|
||||
4. |Power of two size array|. The size of metas is a power of two. This makes it
|
||||
possible to find a bucket from a hash code you can use hash & (SIZE -1) instead
|
||||
of abs(hash) % SIZE. Modulo is extremely expensive so using '&' is a big perfor-
|
||||
mance improvement. The general concern with this is that you only use the lower
|
||||
bits of the hash and can cause many collisions. This is solved by using very go-
|
||||
od hash-function.
|
||||
|
||||
5. |Extra metas|. The hashmap keeps track of the highest probe_count. The trick
|
||||
is to allocate extra metas > max(probe_count), so you never have to do any boun-
|
||||
ds-checking because the extra metas ensures that an element will never go beyond
|
||||
index the last index.
|
||||
|
||||
6. |Cached rehashing|. When the load_factor of the map exceeds the max_load_fac-
|
||||
tor the size of metas is doubled and all the elements need to be "rehashed" to
|
||||
find the index in the new array. Instead of rehashing complete, it simply uses
|
||||
the hashbits stored in the meta.
|
||||
*/
|
||||
|
||||
const (
|
||||
// Number of bits from the hash stored for each entry
|
||||
hashbits = 24
|
||||
@ -17,42 +63,25 @@ const (
|
||||
// Initial log-number of buckets in the hashtable
|
||||
init_log_capicity = 5
|
||||
// Initial number of buckets in the hashtable
|
||||
init_capicity = 1<<init_log_capicity
|
||||
// Initial load-factor
|
||||
init_load_factor = 0.8
|
||||
init_capicity = 1 << init_log_capicity
|
||||
// Initial max load-factor
|
||||
init_max_load_factor = 0.8
|
||||
// Minimum Load-factor.
|
||||
// Number is picked to make delete O(1) amortized
|
||||
min_load_factor = 0.3
|
||||
// Initial range cap
|
||||
init_range_cap = init_capicity - 1
|
||||
init_cap = init_capicity - 2
|
||||
// Used for incrementing `extra_metas` when max
|
||||
// probe count is too high, to avoid overflow
|
||||
extra_metas_inc = 4
|
||||
// Bitmask to select all the hashbits
|
||||
hash_mask = u32(0x00FFFFFF)
|
||||
// Used for incrementing the probe-count
|
||||
probe_inc = u32(0x01000000)
|
||||
probe_inc = u32(0x01000000)
|
||||
// Bitmask for maximum probe count
|
||||
max_probe = u32(0xFF000000)
|
||||
)
|
||||
|
||||
pub struct map {
|
||||
// Byte size of value
|
||||
value_bytes int
|
||||
mut:
|
||||
// Index of the highest index in the hashtable
|
||||
range_cap u32
|
||||
// Number of cached hashbits left for rehasing
|
||||
window byte
|
||||
// Used for right-shifting out used hashbits
|
||||
shift byte
|
||||
// Pointer to Key-value memory
|
||||
key_values &KeyValue
|
||||
// Pointer to probe_hash memory. Each Key-value has a
|
||||
// corresponding probe_hash-DWORD. Upper-bits are the
|
||||
// probe-count and lower-bits are bits from the hash.
|
||||
probe_hash &u32
|
||||
// Measure that decides when to increase the capacity
|
||||
load_factor f32
|
||||
pub mut:
|
||||
// Number of key-values currently in the hashmap
|
||||
size int
|
||||
}
|
||||
|
||||
struct KeyValue {
|
||||
key string
|
||||
mut:
|
||||
@ -65,20 +94,87 @@ mut:
|
||||
data &KeyValue
|
||||
cap u32
|
||||
size u32
|
||||
deletes u32
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn new_dense_array() DenseArray {
|
||||
unsafe {
|
||||
return DenseArray {
|
||||
data: &KeyValue(malloc(8 * sizeof(KeyValue)))
|
||||
cap: 8
|
||||
size: 0
|
||||
deletes: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Push element to array and return index
|
||||
// The growth-factor is roughly 12.5 `(x + (x >> 3))`
|
||||
[inline]
|
||||
fn (d mut DenseArray) push(kv KeyValue) u32 {
|
||||
if d.cap == d.size {
|
||||
d.cap += d.cap >> 3
|
||||
d.data = &KeyValue(C.realloc(d.data, sizeof(KeyValue) * d.cap))
|
||||
}
|
||||
push_index := d.size
|
||||
d.data[push_index] = kv
|
||||
d.size++
|
||||
return push_index
|
||||
}
|
||||
|
||||
// Move all zeros to the end of the array
|
||||
// and resize array
|
||||
fn (d mut DenseArray) zeros_to_end() {
|
||||
mut count := u32(0)
|
||||
for i in 0..d.size {
|
||||
if d.data[i].key.str != 0 {
|
||||
tmp := d.data[count]
|
||||
d.data[count] = d.data[i]
|
||||
d.data[i] = tmp
|
||||
count++
|
||||
}
|
||||
}
|
||||
count++
|
||||
d.size = count
|
||||
d.cap = if count < 8 {8} else {count}
|
||||
d.data = &KeyValue(C.realloc(d.data, sizeof(KeyValue) * d.cap))
|
||||
}
|
||||
|
||||
pub struct map {
|
||||
// Byte size of value
|
||||
value_bytes int
|
||||
mut:
|
||||
// Index of the highest index in the hashtable
|
||||
cap u32
|
||||
// Number of cached hashbits left for rehasing
|
||||
window byte
|
||||
// Used for right-shifting out used hashbits
|
||||
shift byte
|
||||
// Pointer to Key-value memory
|
||||
key_values DenseArray
|
||||
// Pointer to meta-data
|
||||
metas &u32
|
||||
// Measure that decides when to increase the capacity
|
||||
max_load_factor f32
|
||||
// Extra metas that allows for no ranging when incrementing
|
||||
// index in the hashmap
|
||||
extra_metas u32
|
||||
pub mut:
|
||||
// Number of key-values currently in the hashmap
|
||||
size int
|
||||
}
|
||||
|
||||
fn new_map(n, value_bytes int) map {
|
||||
probe_hash_bytes := sizeof(u32) * init_capicity
|
||||
key_value_bytes := sizeof(KeyValue) * init_capicity
|
||||
memory := vcalloc(key_value_bytes + probe_hash_bytes)
|
||||
return map{
|
||||
value_bytes: value_bytes
|
||||
range_cap: init_range_cap
|
||||
shift: init_log_capicity
|
||||
cap: init_cap
|
||||
window: cached_hashbits
|
||||
key_values: &KeyValue(memory)
|
||||
probe_hash: &u32(memory + key_value_bytes)
|
||||
load_factor: init_load_factor
|
||||
shift: init_log_capicity
|
||||
key_values: new_dense_array()
|
||||
metas: &u32(vcalloc(sizeof(u32) * (init_capicity + extra_metas_inc)))
|
||||
max_load_factor: init_max_load_factor
|
||||
extra_metas: extra_metas_inc
|
||||
size: 0
|
||||
}
|
||||
}
|
||||
@ -91,286 +187,246 @@ fn new_map_init(n, value_bytes int, keys &string, values voidptr) map {
|
||||
return out
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (m map) key_to_index(key string) (u64, u32) {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
index := hash & m.cap
|
||||
meta := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
return index, meta
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn meta_less(metas &u32, i u64, m u32) (u64, u32){
|
||||
mut index := i
|
||||
mut meta := m
|
||||
for meta < metas[index] {
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
return index, meta
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (m mut map) meta_greater(ms &u32, i u64, me u32, kvi u32) &u32 {
|
||||
mut metas := ms
|
||||
mut meta := me
|
||||
mut index := i
|
||||
mut kv_index := kvi
|
||||
for metas[index] != 0 {
|
||||
if meta > metas[index] {
|
||||
tmp_meta := metas[index]
|
||||
metas[index] = meta
|
||||
meta = tmp_meta
|
||||
tmp_index := metas[index + 1]
|
||||
metas[index + 1] = kv_index
|
||||
kv_index = tmp_index
|
||||
}
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
metas[index] = meta
|
||||
metas[index + 1] = kv_index
|
||||
probe_count := (meta >> hashbits) - 1
|
||||
if (probe_count << 1) == m.extra_metas {
|
||||
m.extra_metas += extra_metas_inc
|
||||
mem_size := (m.cap + 2 + m.extra_metas)
|
||||
metas = &u32(realloc(metas, sizeof(u32) * mem_size))
|
||||
memset(metas + mem_size - extra_metas_inc, 0, sizeof(u32) * extra_metas_inc)
|
||||
// Should almost never happen
|
||||
if probe_count == 252 {
|
||||
panic("Probe overflow")
|
||||
}
|
||||
}
|
||||
return metas
|
||||
}
|
||||
|
||||
fn (m mut map) set(key string, value voidptr) {
|
||||
// load_factor can be adjusted.
|
||||
if (f32(m.size) / f32(m.range_cap)) > m.load_factor {
|
||||
load_factor := f32(m.size << 1) / f32(m.cap)
|
||||
if load_factor > m.max_load_factor {
|
||||
m.expand()
|
||||
}
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
mut index, mut meta := m.key_to_index(key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
// While we might have a match
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
C.memcpy(m.key_values[index].value, value, m.value_bytes)
|
||||
for meta == m.metas[index] {
|
||||
kv_index := m.metas[index + 1]
|
||||
if key == m.key_values.data[kv_index].key {
|
||||
C.memcpy(m.key_values.data[kv_index].value, value, m.value_bytes)
|
||||
return
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
// Match is not possible anymore.
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
mut current_kv := KeyValue{
|
||||
key:key
|
||||
value:malloc(m.value_bytes)
|
||||
// Match not possible anymore
|
||||
kv := KeyValue{
|
||||
key: key
|
||||
value: malloc(m.value_bytes)
|
||||
}
|
||||
C.memcpy(current_kv.value, value, m.value_bytes)
|
||||
for m.probe_hash[index] != 0 {
|
||||
if probe_hash > m.probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := m.probe_hash[index]
|
||||
m.probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := m.key_values[index]
|
||||
m.key_values[index] = current_kv
|
||||
current_kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(current_kv.key, current_kv.value)
|
||||
return
|
||||
}
|
||||
m.probe_hash[index] = probe_hash
|
||||
m.key_values[index] = current_kv
|
||||
C.memcpy(kv.value, value, m.value_bytes)
|
||||
kv_index := m.key_values.push(kv)
|
||||
m.metas = m.meta_greater(m.metas, index, meta, kv_index)
|
||||
m.size++
|
||||
}
|
||||
|
||||
// Doubles the size of the hashmap
|
||||
fn (m mut map) expand() {
|
||||
old_range_cap := m.range_cap
|
||||
// double the size of the hashmap
|
||||
m.range_cap = ((m.range_cap + 1)<<1) - 1
|
||||
// check if no hashbits are left
|
||||
old_cap := m.cap
|
||||
m.cap = ((m.cap + 2)<<1) - 2
|
||||
// Check if any hashbits are left
|
||||
if m.window == 0 {
|
||||
m.shift += cached_hashbits
|
||||
m.rehash(old_range_cap)
|
||||
m.rehash()
|
||||
m.window = cached_hashbits
|
||||
}
|
||||
else {
|
||||
m.cached_rehash(old_range_cap)
|
||||
m.cached_rehash(old_cap)
|
||||
}
|
||||
m.window--
|
||||
}
|
||||
|
||||
fn (m mut map) rehash(old_range_cap u32) {
|
||||
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
|
||||
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
|
||||
memory := vcalloc(probe_hash_bytes + key_value_bytes)
|
||||
mut new_key_values := &KeyValue(memory)
|
||||
mut new_probe_hash := &u32(memory + key_value_bytes)
|
||||
for i := u32(0); i < old_range_cap + 1; i++ {
|
||||
if m.probe_hash[i] != 0 {
|
||||
mut kv := m.key_values[i]
|
||||
hash := wyhash.wyhash_c(kv.key.str, u64(kv.key.len), 0)
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < new_probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
for new_probe_hash[index] != 0 {
|
||||
if probe_hash > new_probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := new_probe_hash[index]
|
||||
new_probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := new_key_values[index]
|
||||
new_key_values[index] = kv
|
||||
kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(kv.key, kv.value)
|
||||
return
|
||||
}
|
||||
new_probe_hash[index] = probe_hash
|
||||
new_key_values[index] = kv
|
||||
fn (m mut map) rehash() {
|
||||
meta_bytes := sizeof(u32) * (m.cap + 2 + m.extra_metas)
|
||||
m.metas = &u32(C.realloc(m.metas, meta_bytes))
|
||||
C.memset(m.metas, 0, meta_bytes)
|
||||
for i := u32(0); i < m.key_values.size; i++ {
|
||||
if m.key_values.data[i].key.str == 0 {
|
||||
continue
|
||||
}
|
||||
kv := m.key_values.data[i]
|
||||
mut index, mut meta := m.key_to_index(kv.key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
m.metas = m.meta_greater(m.metas, index, meta, i)
|
||||
}
|
||||
}
|
||||
|
||||
fn (m mut map) cached_rehash(old_cap u32) {
|
||||
mut new_meta := &u32(vcalloc(sizeof(u32) * (m.cap + 2 + m.extra_metas)))
|
||||
old_extra_metas := m.extra_metas
|
||||
for i := 0; i <= old_cap + old_extra_metas; i += 2 {
|
||||
if m.metas[i] == 0 {
|
||||
continue
|
||||
}
|
||||
old_meta := m.metas[i]
|
||||
old_probe_count := u64((old_meta>>hashbits) - 1) << 1
|
||||
old_index := (i - old_probe_count) & (m.cap >> 1)
|
||||
mut index := u64(old_index) | (old_meta << m.shift) & m.cap
|
||||
mut meta := (old_meta & hash_mask) | probe_inc
|
||||
index, meta = meta_less(new_meta, index, meta)
|
||||
kv_index := m.metas[i + 1]
|
||||
new_meta = m.meta_greater(new_meta, index, meta, kv_index)
|
||||
}
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
}
|
||||
m.key_values = new_key_values
|
||||
m.probe_hash = new_probe_hash
|
||||
}
|
||||
|
||||
fn (m mut map) cached_rehash(old_range_cap u32) {
|
||||
probe_hash_bytes := sizeof(u32) * (m.range_cap + 1)
|
||||
key_value_bytes := sizeof(KeyValue) * (m.range_cap + 1)
|
||||
memory := vcalloc(probe_hash_bytes + key_value_bytes)
|
||||
mut new_probe_hash := &u32(memory + key_value_bytes)
|
||||
mut new_key_values := &KeyValue(memory)
|
||||
for i := u32(0); i < old_range_cap + 1; i++ {
|
||||
if m.probe_hash[i] != 0 {
|
||||
mut kv := m.key_values[i]
|
||||
mut probe_hash := m.probe_hash[i]
|
||||
original := u64(i - ((probe_hash>>hashbits) - 1)) & (m.range_cap>>1)
|
||||
hash := original | (probe_hash<<m.shift)
|
||||
probe_hash = (probe_hash & hash_mask) | probe_inc
|
||||
mut index := hash & m.range_cap
|
||||
// While probe count is less
|
||||
for probe_hash < new_probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Probe until an empty index is found.
|
||||
// Swap when probe count is higher/richer (Robin Hood).
|
||||
for new_probe_hash[index] != 0 {
|
||||
if probe_hash > new_probe_hash[index] {
|
||||
// Swap probe_hash
|
||||
tmp_probe_hash := new_probe_hash[index]
|
||||
new_probe_hash[index] = probe_hash
|
||||
probe_hash = tmp_probe_hash
|
||||
// Swap KeyValue
|
||||
tmp_kv := new_key_values[index]
|
||||
new_key_values[index] = kv
|
||||
kv = tmp_kv
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Should almost never happen
|
||||
if (probe_hash & max_probe) == max_probe {
|
||||
m.expand()
|
||||
m.set(kv.key, kv.value)
|
||||
return
|
||||
}
|
||||
new_probe_hash[index] = probe_hash
|
||||
new_key_values[index] = kv
|
||||
}
|
||||
}
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
}
|
||||
m.key_values = new_key_values
|
||||
m.probe_hash = new_probe_hash
|
||||
}
|
||||
|
||||
pub fn (m mut map) delete(key string) {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
// Perform backwards shifting
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
mut old_index := index
|
||||
index = (index + 1) & m.range_cap
|
||||
mut current_probe_hash := m.probe_hash[index]
|
||||
for (current_probe_hash>>hashbits) > 1 {
|
||||
m.probe_hash[old_index] = current_probe_hash - probe_inc
|
||||
m.key_values[old_index] = m.key_values[index]
|
||||
old_index = index
|
||||
index = (index + 1) & m.range_cap
|
||||
current_probe_hash = m.probe_hash[index]
|
||||
}
|
||||
m.probe_hash[old_index] = 0
|
||||
m.size--
|
||||
return
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
free(m.metas)
|
||||
}
|
||||
m.metas = new_meta
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (m map) get(key string, out voidptr) bool {
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
C.memcpy(out, m.key_values[index].value, m.value_bytes)
|
||||
mut index, mut meta := m.key_to_index(key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
for meta == m.metas[index] {
|
||||
kv_index := m.metas[index + 1]
|
||||
if key == m.key_values.data[kv_index].key {
|
||||
C.memcpy(out, m.key_values.data[kv_index].value, m.value_bytes)
|
||||
return true
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// TODO
|
||||
/*
|
||||
fn (m &map) get2(key string, out voidptr) voidptr {
|
||||
[inline]
|
||||
fn (m map) get2(key string) voidptr {
|
||||
mut index, mut meta := m.key_to_index(key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
for meta == m.metas[index] {
|
||||
kv_index := m.metas[index + 1]
|
||||
if key == m.key_values.data[kv_index].key {
|
||||
out := malloc(m.value_bytes)
|
||||
C.memcpy(out, m.key_values.data[kv_index].value, m.value_bytes)
|
||||
return out
|
||||
}
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
return voidptr(0)
|
||||
}
|
||||
*/
|
||||
|
||||
[inline]
|
||||
fn (m map) exists(key string) bool {
|
||||
if m.value_bytes == 0 {
|
||||
return false
|
||||
}
|
||||
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
|
||||
mut index := hash & m.range_cap
|
||||
mut probe_hash := u32(((hash>>m.shift) & hash_mask) | probe_inc)
|
||||
for probe_hash < m.probe_hash[index] {
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
}
|
||||
for probe_hash == m.probe_hash[index] {
|
||||
if key == m.key_values[index].key {
|
||||
mut index, mut meta := m.key_to_index(key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
for meta == m.metas[index] {
|
||||
kv_index := m.metas[index + 1]
|
||||
if key == m.key_values.data[kv_index].key {
|
||||
return true
|
||||
}
|
||||
index = (index + 1) & m.range_cap
|
||||
probe_hash += probe_inc
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
pub fn (m mut map) delete(key string) {
|
||||
mut index, mut meta := m.key_to_index(key)
|
||||
index, meta = meta_less(m.metas, index, meta)
|
||||
// Perform backwards shifting
|
||||
for meta == m.metas[index] {
|
||||
kv_index := m.metas[index + 1]
|
||||
if key == m.key_values.data[kv_index].key {
|
||||
C.memset(&m.key_values.data[kv_index], 0, sizeof(KeyValue))
|
||||
mut old_index := index
|
||||
index += 2
|
||||
mut cur_meta := m.metas[index]
|
||||
mut cur_index := m.metas[index + 1]
|
||||
for (cur_meta >> hashbits) > 1 {
|
||||
m.metas[old_index] = cur_meta - probe_inc
|
||||
m.metas[old_index + 1] = cur_index
|
||||
old_index = index
|
||||
index += 2
|
||||
cur_meta = m.metas[index]
|
||||
cur_index = m.metas[index + 1]
|
||||
}
|
||||
m.metas[old_index] = 0
|
||||
m.size--
|
||||
m.key_values.deletes++
|
||||
if m.key_values.size <= 32 {return}
|
||||
if (f32(m.key_values.size) / f32(m.key_values.deletes)) < 1 {
|
||||
m.key_values.zeros_to_end()
|
||||
m.rehash()
|
||||
}
|
||||
return
|
||||
}
|
||||
index += 2
|
||||
meta += probe_inc
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (m &map) keys() []string {
|
||||
mut keys := [''].repeat(m.size)
|
||||
//mut keys := []string{len: m.size}
|
||||
if m.value_bytes == 0 {
|
||||
return keys
|
||||
}
|
||||
mut j := 0
|
||||
for i := u32(0); i < m.range_cap + 1; i++ {
|
||||
if m.probe_hash[i] != 0 {
|
||||
keys[j] = m.key_values[i].key
|
||||
j++
|
||||
for i := u32(0); i < m.key_values.size; i++ {
|
||||
if m.key_values.data[i].key.str == 0 {
|
||||
continue
|
||||
}
|
||||
keys[j] = m.key_values.data[i].key
|
||||
j++
|
||||
}
|
||||
return keys
|
||||
}
|
||||
|
||||
pub fn (m mut map) set_load_factor(new_load_factor f32) {
|
||||
if new_load_factor > 1.0 {
|
||||
m.load_factor = 1.0
|
||||
}
|
||||
else if new_load_factor < 0.1 {
|
||||
m.load_factor = 0.1
|
||||
}
|
||||
else {
|
||||
m.load_factor = new_load_factor
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (m mut map) free() {
|
||||
unsafe{
|
||||
free(m.key_values)
|
||||
pub fn (m map) free() {
|
||||
unsafe {
|
||||
free(m.metas)
|
||||
free(m.key_values.data)
|
||||
}
|
||||
}
|
||||
|
||||
@ -389,4 +445,4 @@ pub fn (m map_string) str() string {
|
||||
}
|
||||
sb.writeln('}')
|
||||
return sb.str()
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user