From e1a64533020e4b0cde80fdc2a844f650db9c3468 Mon Sep 17 00:00:00 2001 From: Alexander Medvednikov Date: Wed, 10 Jul 2019 21:40:29 +0200 Subject: [PATCH] move Complex logic to cmath It was causing problems with cross compiling for Linux, and it should be a separate module anyway, just like in Go and Python. --- vlib/{math => cmath}/complex.v | 36 ++-- vlib/{math => cmath}/complex_test.v | 293 ++++++++++++++-------------- 2 files changed, 167 insertions(+), 162 deletions(-) rename vlib/{math => cmath}/complex.v (89%) rename vlib/{math => cmath}/complex_test.v (61%) diff --git a/vlib/math/complex.v b/vlib/cmath/complex.v similarity index 89% rename from vlib/math/complex.v rename to vlib/cmath/complex.v index 42a1fc0067..90242d072e 100644 --- a/vlib/math/complex.v +++ b/vlib/cmath/complex.v @@ -2,7 +2,9 @@ // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. -module math +module cmath + +import math struct Complex { re f64 @@ -38,7 +40,7 @@ pub fn (c Complex) mod() f64 { // Complex Angle pub fn (c Complex) angle() f64 { - return atan2(c.im, c.re) + return math.atan2(c.im, c.re) } // Complex Addition c1 + c2 @@ -123,11 +125,11 @@ pub fn (c Complex) mulinv() Complex { // Based on // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review pub fn (c Complex) pow(n f64) Complex { - r := pow(c.abs(), n) + r := math.pow(c.abs(), n) angle := c.angle() return Complex { - r * cos(n * angle), - r * sin(n * angle) + r * math.cos(n * angle), + r * math.sin(n * angle) } } @@ -141,10 +143,10 @@ pub fn (c Complex) root(n f64) Complex { // Based on // https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf pub fn (c Complex) exp() Complex { - a := exp(c.re) + a := math.exp(c.re) return Complex { - a * cos(c.im), - a * sin(c.im) + a * math.cos(c.im), + a * math.sin(c.im) } } @@ -153,7 +155,7 @@ pub fn (c Complex) exp() Complex { // http://www.chemistrylearning.com/logarithm-of-complex-number/ pub fn (c Complex) ln() Complex { return Complex { - log(c.abs()), + math.log(c.abs()), c.angle() } } @@ -163,8 +165,8 @@ pub fn (c Complex) ln() Complex { // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) sin() Complex { return Complex{ - sin(c.re) * cosh(c.im), - cos(c.re) * sinh(c.im) + math.sin(c.re) * math.cosh(c.im), + math.cos(c.re) * math.sinh(c.im) } } @@ -173,8 +175,8 @@ pub fn (c Complex) sin() Complex { // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) cos() Complex { return Complex{ - cos(c.re) * cosh(c.im), - -(sin(c.re) * sinh(c.im)) + math.cos(c.re) * math.cosh(c.im), + -(math.sin(c.re) * math.sinh(c.im)) } } @@ -190,8 +192,8 @@ pub fn (c Complex) tan() Complex { // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) sinh() Complex { return Complex{ - cos(c.im) * sinh(c.re), - sin(c.im) * cosh(c.re) + math.cos(c.im) * math.sinh(c.re), + math.sin(c.im) * math.cosh(c.re) } } @@ -200,8 +202,8 @@ pub fn (c Complex) sinh() Complex { // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) cosh() Complex { return Complex{ - cos(c.im) * cosh(c.re), - sin(c.im) * sinh(c.re) + math.cos(c.im) * math.cosh(c.re), + math.sin(c.im) * math.sinh(c.re) } } diff --git a/vlib/math/complex_test.v b/vlib/cmath/complex_test.v similarity index 61% rename from vlib/math/complex_test.v rename to vlib/cmath/complex_test.v index c1fd5c1d8d..9218d172fd 100644 --- a/vlib/math/complex_test.v +++ b/vlib/cmath/complex_test.v @@ -1,128 +1,129 @@ -import math +import math +import cmath // Tests are based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers fn test_complex_addition() { - mut c1 := math.complex(0,-10) - mut c2 := math.complex(-40,8) + mut c1 := cmath.complex(0,-10) + mut c2 := cmath.complex(-40,8) mut result := c1 + c2 - assert result.equals(math.complex(-40,-2)) - c1 = math.complex(-71,2) - c2 = math.complex(88,-12) + assert result.equals(cmath.complex(-40,-2)) + c1 = cmath.complex(-71,2) + c2 = cmath.complex(88,-12) result = c1 + c2 - assert result.equals(math.complex(17,-10)) - c1 = math.complex(0,-30) - c2 = math.complex(52,-30) + assert result.equals(cmath.complex(17,-10)) + c1 = cmath.complex(0,-30) + c2 = cmath.complex(52,-30) result = c1 + c2 - assert result.equals(math.complex(52,-60)) - c1 = math.complex(12,-9) - c2 = math.complex(32,-6) + assert result.equals(cmath.complex(52,-60)) + c1 = cmath.complex(12,-9) + c2 = cmath.complex(32,-6) result = c1 + c2 - assert result.equals(math.complex(44,-15)) + assert result.equals(cmath.complex(44,-15)) } fn test_complex_subtraction() { - mut c1 := math.complex(-8,0) - mut c2 := math.complex(6,30) + mut c1 := cmath.complex(-8,0) + mut c2 := cmath.complex(6,30) mut result := c1 - c2 - assert result.equals(math.complex(-14,-30)) - c1 = math.complex(-19,7) - c2 = math.complex(29,32) + assert result.equals(cmath.complex(-14,-30)) + c1 = cmath.complex(-19,7) + c2 = cmath.complex(29,32) result = c1 - c2 - assert result.equals(math.complex(-48,-25)) - c1 = math.complex(12,0) - c2 = math.complex(23,13) + assert result.equals(cmath.complex(-48,-25)) + c1 = cmath.complex(12,0) + c2 = cmath.complex(23,13) result = c1 - c2 - assert result.equals(math.complex(-11,-13)) - c1 = math.complex(-14,3) - c2 = math.complex(0,14) + assert result.equals(cmath.complex(-11,-13)) + c1 = cmath.complex(-14,3) + c2 = cmath.complex(0,14) result = c1 - c2 - assert result.equals(math.complex(-14,-11)) + assert result.equals(cmath.complex(-14,-11)) } fn test_complex_multiplication() { - mut c1 := math.complex(1,2) - mut c2 := math.complex(1,-4) + mut c1 := cmath.complex(1,2) + mut c2 := cmath.complex(1,-4) mut result := c1.multiply(c2) - assert result.equals(math.complex(9,-2)) - c1 = math.complex(-4,-4) - c2 = math.complex(-5,-3) + assert result.equals(cmath.complex(9,-2)) + c1 = cmath.complex(-4,-4) + c2 = cmath.complex(-5,-3) result = c1.multiply(c2) - assert result.equals(math.complex(8,32)) - c1 = math.complex(4,4) - c2 = math.complex(-2,-5) + assert result.equals(cmath.complex(8,32)) + c1 = cmath.complex(4,4) + c2 = cmath.complex(-2,-5) result = c1.multiply(c2) - assert result.equals(math.complex(12,-28)) - c1 = math.complex(2,-2) - c2 = math.complex(4,-4) + assert result.equals(cmath.complex(12,-28)) + c1 = cmath.complex(2,-2) + c2 = cmath.complex(4,-4) result = c1.multiply(c2) - assert result.equals(math.complex(0,-16)) + assert result.equals(cmath.complex(0,-16)) } fn test_complex_division() { - mut c1 := math.complex(-9,-6) - mut c2 := math.complex(-3,-2) + mut c1 := cmath.complex(-9,-6) + mut c2 := cmath.complex(-3,-2) mut result := c1.divide(c2) - assert result.equals(math.complex(3,0)) - c1 = math.complex(-23,11) - c2 = math.complex(5,1) + assert result.equals(cmath.complex(3,0)) + c1 = cmath.complex(-23,11) + c2 = cmath.complex(5,1) result = c1.divide(c2) - assert result.equals(math.complex(-4,3)) - c1 = math.complex(8,-2) - c2 = math.complex(-4,1) + assert result.equals(cmath.complex(-4,3)) + c1 = cmath.complex(8,-2) + c2 = cmath.complex(-4,1) result = c1.divide(c2) - assert result.equals(math.complex(-2,0)) - c1 = math.complex(11,24) - c2 = math.complex(-4,-1) + assert result.equals(cmath.complex(-2,0)) + c1 = cmath.complex(11,24) + c2 = cmath.complex(-4,-1) result = c1.divide(c2) - assert result.equals(math.complex(-4,-5)) + assert result.equals(cmath.complex(-4,-5)) } fn test_complex_conjugate() { - mut c1 := math.complex(0,8) + mut c1 := cmath.complex(0,8) mut result := c1.conjugate() - assert result.equals(math.complex(0,-8)) - c1 = math.complex(7,3) + assert result.equals(cmath.complex(0,-8)) + c1 = cmath.complex(7,3) result = c1.conjugate() - assert result.equals(math.complex(7,-3)) - c1 = math.complex(2,2) + assert result.equals(cmath.complex(7,-3)) + c1 = cmath.complex(2,2) result = c1.conjugate() - assert result.equals(math.complex(2,-2)) - c1 = math.complex(7,0) + assert result.equals(cmath.complex(2,-2)) + c1 = cmath.complex(7,0) result = c1.conjugate() - assert result.equals(math.complex(7,0)) + assert result.equals(cmath.complex(7,0)) } fn test_complex_equals() { - mut c1 := math.complex(0,8) - mut c2 := math.complex(0,8) + mut c1 := cmath.complex(0,8) + mut c2 := cmath.complex(0,8) assert c1.equals(c2) - c1 = math.complex(-3,19) - c2 = math.complex(-3,19) + c1 = cmath.complex(-3,19) + c2 = cmath.complex(-3,19) assert c1.equals(c2) } fn test_complex_abs() { - mut c1 := math.complex(3,4) + mut c1 := cmath.complex(3,4) assert c1.abs() == 5 - c1 = math.complex(1,2) + c1 = cmath.complex(1,2) assert c1.abs() == math.sqrt(5) assert c1.abs() == c1.conjugate().abs() - c1 = math.complex(7,0) + c1 = cmath.complex(7,0) assert c1.abs() == 7 } fn test_complex_angle(){ - mut c := math.complex(1, 0) + mut c := cmath.complex(1, 0) assert c.angle() * 180 / math.Pi == 0 - c = math.complex(1, 1) + c = cmath.complex(1, 1) assert c.angle() * 180 / math.Pi == 45 - c = math.complex(0, 1) + c = cmath.complex(0, 1) assert c.angle() * 180 / math.Pi == 90 - c = math.complex(-1, 1) + c = cmath.complex(-1, 1) assert c.angle() * 180 / math.Pi == 135 - c = math.complex(-1, -1) + c = cmath.complex(-1, -1) assert c.angle() * 180 / math.Pi == -135 mut cc := c.conjugate() assert cc.angle() + c.angle() == 0 @@ -131,47 +132,47 @@ fn test_complex_angle(){ fn test_complex_addinv() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(-5,-7) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(-5,-7) mut result := c1.addinv() assert result.equals(c2) - c1 = math.complex(-3,4) - c2 = math.complex(3,-4) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(3,-4) result = c1.addinv() assert result.equals(c2) - c1 = math.complex(-1,-2) - c2 = math.complex(1,2) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(1,2) result = c1.addinv() assert result.equals(c2) } fn test_complex_mulinv() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(0.067568,-0.094595) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(0.067568,-0.094595) mut result := c1.mulinv() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-0.12,-0.16) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-0.12,-0.16) result = c1.mulinv() assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-0.2,0.4) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-0.2,0.4) result = c1.mulinv() assert result.equals(c2) } fn test_complex_mod() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) + mut c1 := cmath.complex(5,7) mut result := c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('8.602325') - c1 = math.complex(-3,4) + c1 = cmath.complex(-3,4) result = c1.mod() assert result == 5 - c1 = math.complex(-1,-2) + c1 = cmath.complex(-1,-2) result = c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('2.236068') @@ -179,18 +180,18 @@ fn test_complex_mod() { fn test_complex_pow() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(-24.0,70.0) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(-24.0,70.0) mut result := c1.pow(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(117,44) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(117,44) result = c1.pow(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-7,-24) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-7,-24) result = c1.pow(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -198,18 +199,18 @@ fn test_complex_pow() { fn test_complex_root() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(2.607904,1.342074) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(2.607904,1.342074) mut result := c1.root(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(1.264953,1.150614) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(1.264953,1.150614) result = c1.root(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(1.068059,-0.595482) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(1.068059,-0.595482) result = c1.root(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -217,18 +218,18 @@ fn test_complex_root() { fn test_complex_exp() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(111.889015,97.505457) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(111.889015,97.505457) mut result := c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-0.032543,-0.037679) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-0.032543,-0.037679) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-0.153092,-0.334512) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-0.153092,-0.334512) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -236,18 +237,18 @@ fn test_complex_exp() { fn test_complex_ln() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(2.152033,0.950547) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(2.152033,0.950547) mut result := c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(1.609438,2.214297) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(1.609438,2.214297) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(0.804719,-2.034444) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(0.804719,-2.034444) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -255,18 +256,18 @@ fn test_complex_ln() { fn test_complex_sin() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(-525.794515,155.536550) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(-525.794515,155.536550) mut result := c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-3.853738,-27.016813) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-3.853738,-27.016813) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-3.165779,-1.959601) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-3.165779,-1.959601) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -274,18 +275,18 @@ fn test_complex_sin() { fn test_complex_cos() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(155.536809,525.793641) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(155.536809,525.793641) mut result := c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-27.034946,3.851153) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-27.034946,3.851153) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(2.032723,-3.051898) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(2.032723,-3.051898) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -293,18 +294,18 @@ fn test_complex_cos() { fn test_complex_tan() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(-0.000001,1.000001) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(-0.000001,1.000001) mut result := c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(0.000187,0.999356) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(0.000187,0.999356) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-0.033813,-1.014794) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-0.033813,-1.014794) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -312,18 +313,18 @@ fn test_complex_tan() { fn test_complex_sinh() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(55.941968,48.754942) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(55.941968,48.754942) mut result := c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(6.548120,-7.619232) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(6.548120,-7.619232) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(0.489056,-1.403119) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(0.489056,-1.403119) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -331,18 +332,18 @@ fn test_complex_sinh() { fn test_complex_cosh() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(55.947047,48.750515) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(55.947047,48.750515) mut result := c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-6.580663,7.581553) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-6.580663,7.581553) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-0.642148,1.068607) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-0.642148,1.068607) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) @@ -350,19 +351,21 @@ fn test_complex_cosh() { fn test_complex_tanh() { // Tests were also verified on Wolfram Alpha - mut c1 := math.complex(5,7) - mut c2 := math.complex(0.999988,0.000090) + mut c1 := cmath.complex(5,7) + mut c2 := cmath.complex(0.999988,0.000090) mut result := c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-3,4) - c2 = math.complex(-1.000710,0.004908) + c1 = cmath.complex(-3,4) + c2 = cmath.complex(-1.000710,0.004908) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) - c1 = math.complex(-1,-2) - c2 = math.complex(-1.166736,0.243458) + c1 = cmath.complex(-1,-2) + c2 = cmath.complex(-1.166736,0.243458) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) -} \ No newline at end of file +} + +