1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

rand: reorganize: phase 2

This commit is contained in:
Hungry Blue Dev
2020-06-09 18:36:07 +05:30
committed by GitHub
parent 67fcce2d46
commit e649cf84e3
28 changed files with 603 additions and 408 deletions

View File

@ -0,0 +1,224 @@
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module splitmix64
import rand.util
// Ported from http://xoshiro.di.unimi.it/splitmix64.c
pub struct SplitMix64RNG {
mut:
state u64 = util.time_seed_64()
has_extra bool = false
extra u32
}
// rng.seed(seed_data) sets the seed of the accepting SplitMix64RNG to the given data
// in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
if seed_data.len != 2 {
eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
exit(1)
}
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
rng.has_extra = false
}
// rng.u32() updates the PRNG state and returns the next pseudorandom u32
[inline]
pub fn (mut rng SplitMix64RNG) u32() u32 {
if rng.has_extra {
rng.has_extra = false
return rng.extra
}
full_value := rng.u64()
lower := u32(full_value & util.lower_mask)
upper := u32(full_value >> 32)
rng.extra = upper
rng.has_extra = true
return lower
}
// rng.u64() updates the PRNG state and returns the next pseudorandom u64
[inline]
pub fn (mut rng SplitMix64RNG) u64() u64 {
rng.state += (0x9e3779b97f4a7c15)
mut z := rng.state
z = (z ^ ((z >> u64(30)))) * (0xbf58476d1ce4e5b9)
z = (z ^ ((z >> u64(27)))) * (0x94d049bb133111eb)
return z ^ (z >> (31))
}
// rng.u32n(bound) returns a pseudorandom u32 less than the bound
[inline]
pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
// This function is kept similar to the u64 version
if bound == 0 {
eprintln('max must be non-zero')
exit(1)
}
threshold := -bound % bound
for {
r := rng.u32()
if r >= threshold {
return r % bound
}
}
return u32(0)
}
// rng.u64n(bound) returns a pseudorandom u64 less than the bound
[inline]
pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
// See pcg32.v for explanation of comment. This algorithm
// existed before the refactoring.
if bound == 0 {
eprintln('max must be non-zero')
exit(1)
}
threshold := -bound % bound
for {
r := rng.u64()
if r >= threshold {
return r % bound
}
}
return u64(0)
}
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) u32_in_range(min, max u32) u32 {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
return min + rng.u32n(max - min)
}
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) u64_in_range(min, max u64) u64 {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
return min + rng.u64n(max - min)
}
// rng.int() returns a pseudorandom 32-bit int (which may be negative)
[inline]
pub fn (mut rng SplitMix64RNG) int() int {
return int(rng.u32())
}
// rng.i64() returns a pseudorandom 64-bit i64 (which may be negative)
[inline]
pub fn (mut rng SplitMix64RNG) i64() i64 {
return i64(rng.u64())
}
// rng.int31() returns a pseudorandom 31-bit int which is non-negative
[inline]
pub fn (mut rng SplitMix64RNG) int31() int {
return int(rng.u32() & util.u31_mask) // Set the 32nd bit to 0.
}
// rng.int63() returns a pseudorandom 63-bit int which is non-negative
[inline]
pub fn (mut rng SplitMix64RNG) int63() i64 {
return i64(rng.u64() & util.u63_mask) // Set the 64th bit to 0.
}
// rng.intn(max) returns a pseudorandom int that lies in [0, max)
[inline]
pub fn (mut rng SplitMix64RNG) intn(max int) int {
if max <= 0 {
eprintln('max has to be positive.')
exit(1)
}
return int(rng.u32n(u32(max)))
}
// rng.i64n(max) returns a pseudorandom int that lies in [0, max)
[inline]
pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
if max <= 0 {
eprintln('max has to be positive.')
exit(1)
}
return i64(rng.u64n(u64(max)))
}
// rng.int_in_range(min, max) returns a pseudorandom int that lies in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) int_in_range(min, max int) int {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
// This supports negative ranges like [-10, -5) because the difference is positive
return min + rng.intn(max - min)
}
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) i64_in_range(min, max i64) i64 {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
return min + rng.i64n(max - min)
}
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
[inline]
pub fn (mut rng SplitMix64RNG) f32() f32 {
return f32(rng.u32()) / util.max_u32_as_f32
}
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
[inline]
pub fn (mut rng SplitMix64RNG) f64() f64 {
return f64(rng.u64()) / util.max_u64_as_f64
}
// rng.f32n() returns a pseudorandom f32 value in [0, max)
[inline]
pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
if max <= 0 {
eprintln('max has to be positive.')
exit(1)
}
return rng.f32() * max
}
// rng.f64n() returns a pseudorandom f64 value in [0, max)
[inline]
pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
if max <= 0 {
eprintln('max has to be positive.')
exit(1)
}
return rng.f64() * max
}
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) f32_in_range(min, max f32) f32 {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
return min + rng.f32n(max - min)
}
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
[inline]
pub fn (mut rng SplitMix64RNG) f64_in_range(min, max f64) f64 {
if max <= min {
eprintln('max must be greater than min')
exit(1)
}
return min + rng.f64n(max - min)
}

View File

@ -0,0 +1,331 @@
import math
import splitmix64
import rand.util
const (
range_limit = 40
value_count = 1000
seeds = [[u32(42), 0], [u32(256), 0]]
)
const (
sample_size = 1000
stats_epsilon = 0.05
inv_sqrt_12 = 1.0 / math.sqrt(12)
)
fn gen_randoms(seed_data []u32, bound int) []u64 {
bound_u64 := u64(bound)
mut randoms := [u64(0)].repeat(20)
mut rnd := splitmix64.SplitMix64RNG{}
rnd.seed(seed_data)
for i in 0 .. 20 {
randoms[i] = rnd.u64n(bound_u64)
}
return randoms
}
fn test_splitmix64_reproducibility() {
seed_data := util.time_seed_array(2)
randoms1 := gen_randoms(seed_data, 1000)
randoms2 := gen_randoms(seed_data, 1000)
assert randoms1.len == randoms2.len
len := randoms1.len
for i in 0 .. len {
assert randoms1[i] == randoms2[i]
}
}
// TODO: use the `in` syntax and remove this function
// after generics has been completely implemented
fn found(value u64, arr []u64) bool {
for item in arr {
if value == item {
return true
}
}
return false
}
fn test_splitmix64_variability() {
// If this test fails and if it is certainly not the implementation
// at fault, try changing the seed values. Repeated values are
// improbable but not impossible.
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
mut values := []u64{cap: value_count}
for i in 0 .. value_count {
value := rng.u64()
assert !found(value, values)
assert values.len == i
values << value
}
}
}
fn check_uniformity_u64(mut rng splitmix64.SplitMix64RNG, range u64) {
range_f64 := f64(range)
expected_mean := range_f64 / 2.0
mut variance := 0.0
for _ in 0 .. sample_size {
diff := f64(rng.u64n(range)) - expected_mean
variance += diff * diff
}
variance /= sample_size - 1
sigma := math.sqrt(variance)
expected_sigma := range_f64 * inv_sqrt_12
error := (sigma - expected_sigma) / expected_sigma
assert math.abs(error) < stats_epsilon
}
fn test_splitmix64_uniformity_u64() {
ranges := [14019545, 80240, 130]
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for range in ranges {
check_uniformity_u64(mut rng, u64(range))
}
}
}
fn check_uniformity_f64(mut rng splitmix64.SplitMix64RNG) {
expected_mean := 0.5
mut variance := 0.0
for _ in 0 .. sample_size {
diff := rng.f64() - expected_mean
variance += diff * diff
}
variance /= sample_size - 1
sigma := math.sqrt(variance)
expected_sigma := inv_sqrt_12
error := (sigma - expected_sigma) / expected_sigma
assert math.abs(error) < stats_epsilon
}
fn test_splitmix64_uniformity_f64() {
// The f64 version
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
check_uniformity_f64(mut rng)
}
}
fn test_splitmix64_u32n() {
max := u32(16384)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.u32n(max)
assert value >= 0
assert value < max
}
}
}
fn test_splitmix64_u64n() {
max := u64(379091181005)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.u64n(max)
assert value >= 0
assert value < max
}
}
}
fn test_splitmix64_u32_in_range() {
max := u32(484468466)
min := u32(316846)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.u32_in_range(min, max)
assert value >= min
assert value < max
}
}
}
fn test_splitmix64_u64_in_range() {
max := u64(216468454685163)
min := u64(6848646868)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.u64_in_range(min, max)
assert value >= min
assert value < max
}
}
}
fn test_splitmix64_int31() {
max_u31 := 0x7FFFFFFF
sign_mask := 0x80000000
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.int31()
assert value >= 0
assert value <= max_u31
// This statement ensures that the sign bit is zero
assert (value & sign_mask) == 0
}
}
}
fn test_splitmix64_int63() {
max_u63 := i64(0x7FFFFFFFFFFFFFFF)
sign_mask := i64(0x8000000000000000)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.int63()
assert value >= 0
assert value <= max_u63
assert (value & sign_mask) == 0
}
}
}
fn test_splitmix64_intn() {
max := 2525642
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.intn(max)
assert value >= 0
assert value < max
}
}
}
fn test_splitmix64_i64n() {
max := i64(3246727724653636)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.i64n(max)
assert value >= 0
assert value < max
}
}
}
fn test_splitmix64_int_in_range() {
min := -4252
max := 230549862
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.int_in_range(min, max)
assert value >= min
assert value < max
}
}
}
fn test_splitmix64_i64_in_range() {
min := i64(-24095)
max := i64(324058)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.i64_in_range(min, max)
assert value >= min
assert value < max
}
}
}
fn test_splitmix64_f32() {
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f32()
assert value >= 0.0
assert value < 1.0
}
}
}
fn test_splitmix64_f64() {
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f64()
assert value >= 0.0
assert value < 1.0
}
}
}
fn test_splitmix64_f32n() {
max := f32(357.0)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f32n(max)
assert value >= 0.0
assert value < max
}
}
}
fn test_splitmix64_f64n() {
max := 1.52e6
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f64n(max)
assert value >= 0.0
assert value < max
}
}
}
fn test_splitmix64_f32_in_range() {
min := f32(-24.0)
max := f32(125.0)
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f32_in_range(min, max)
assert value >= min
assert value < max
}
}
}
fn test_splitmix64_f64_in_range() {
min := -548.7
max := 5015.2
for seed in seeds {
mut rng := splitmix64.SplitMix64RNG{}
rng.seed(seed)
for _ in 0 .. range_limit {
value := rng.f64_in_range(min, max)
assert value >= min
assert value < max
}
}
}