mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
all: replace []byte with []u8
This commit is contained in:
@@ -28,7 +28,7 @@ mut:
|
||||
// The key argument should be the AES key,
|
||||
// either 16, 24, or 32 bytes to select
|
||||
// AES-128, AES-192, or AES-256.
|
||||
pub fn new_cipher(key []byte) cipher.Block {
|
||||
pub fn new_cipher(key []u8) cipher.Block {
|
||||
k := key.len
|
||||
match k {
|
||||
16, 24, 32 {
|
||||
@@ -52,7 +52,7 @@ pub fn (c &AesCipher) block_size() int {
|
||||
// NOTE: `dst` and `src` are both mutable for performance reasons.
|
||||
// NOTE: `dst` and `src` must both be pre-allocated to the correct length.
|
||||
// NOTE: `dst` and `src` may be the same (overlapping entirely).
|
||||
pub fn (c &AesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &AesCipher) encrypt(mut dst []u8, src []u8) {
|
||||
if src.len < aes.block_size {
|
||||
panic('crypto.aes: input not full block')
|
||||
}
|
||||
@@ -71,7 +71,7 @@ pub fn (c &AesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
// NOTE: `dst` and `src` are both mutable for performance reasons.
|
||||
// NOTE: `dst` and `src` must both be pre-allocated to the correct length.
|
||||
// NOTE: `dst` and `src` may be the same (overlapping entirely).
|
||||
pub fn (c &AesCipher) decrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &AesCipher) decrypt(mut dst []u8, src []u8) {
|
||||
if src.len < aes.block_size {
|
||||
panic('crypto.aes: input not full block')
|
||||
}
|
||||
|
||||
@@ -38,7 +38,7 @@ module aes
|
||||
import encoding.binary
|
||||
|
||||
// Encrypt one block from src into dst, using the expanded key xk.
|
||||
fn encrypt_block_generic(xk []u32, mut dst []byte, src []byte) {
|
||||
fn encrypt_block_generic(xk []u32, mut dst []u8, src []u8) {
|
||||
_ = src[15] // early bounds check
|
||||
mut s0 := binary.big_endian_u32(src[..4])
|
||||
mut s1 := binary.big_endian_u32(src[4..8])
|
||||
@@ -85,7 +85,7 @@ fn encrypt_block_generic(xk []u32, mut dst []byte, src []byte) {
|
||||
}
|
||||
|
||||
// Decrypt one block from src into dst, using the expanded key xk.
|
||||
fn decrypt_block_generic(xk []u32, mut dst []byte, src []byte) {
|
||||
fn decrypt_block_generic(xk []u32, mut dst []u8, src []u8) {
|
||||
_ = src[15] // early bounds check
|
||||
mut s0 := binary.big_endian_u32(src[0..4])
|
||||
mut s1 := binary.big_endian_u32(src[4..8])
|
||||
@@ -143,7 +143,7 @@ fn rotw(w u32) u32 {
|
||||
|
||||
// Key expansion algorithm. See FIPS-197, Figure 11.
|
||||
// Their rcon[i] is our powx[i-1] << 24.
|
||||
fn expand_key_generic(key []byte, mut enc []u32, mut dec []u32) {
|
||||
fn expand_key_generic(key []u8, mut enc []u32, mut dec []u32) {
|
||||
// Encryption key setup.
|
||||
mut i := 0
|
||||
nk := key.len / 4
|
||||
|
||||
@@ -7,7 +7,7 @@ import crypto.cipher
|
||||
|
||||
// new_cipher_generic creates and returns a new cipher.Block
|
||||
// this is the generiv v version, no arch optimisations
|
||||
fn new_cipher_generic(key []byte) cipher.Block {
|
||||
fn new_cipher_generic(key []u8) cipher.Block {
|
||||
n := key.len + 28
|
||||
mut c := AesCipher{
|
||||
enc: []u32{len: n}
|
||||
|
||||
@@ -20,8 +20,8 @@ pub const (
|
||||
|
||||
pub struct Hashed {
|
||||
mut:
|
||||
hash []byte
|
||||
salt []byte
|
||||
hash []u8
|
||||
salt []u8
|
||||
cost int
|
||||
major string
|
||||
minor string
|
||||
@@ -31,14 +31,14 @@ const magic_cipher_data = [u8(0x4f), 0x72, 0x70, 0x68, 0x65, 0x61, 0x6e, 0x42, 0
|
||||
0x6c, 0x64, 0x65, 0x72, 0x53, 0x63, 0x72, 0x79, 0x44, 0x6f, 0x75, 0x62, 0x74]
|
||||
|
||||
// generate_from_password return a bcrypt string from Hashed struct.
|
||||
pub fn generate_from_password(password []byte, cost int) ?string {
|
||||
pub fn generate_from_password(password []u8, cost int) ?string {
|
||||
mut p := new_from_password(password, cost) or { return error('Error: $err') }
|
||||
x := p.hash_u8()
|
||||
return x.bytestr()
|
||||
}
|
||||
|
||||
// compare_hash_and_password compares a bcrypt hashed password with its possible hashed version.
|
||||
pub fn compare_hash_and_password(password []byte, hashed_password []byte) ? {
|
||||
pub fn compare_hash_and_password(password []u8, hashed_password []u8) ? {
|
||||
mut p := new_from_hash(hashed_password) or { return error('Error: $err') }
|
||||
p.salt << `=`
|
||||
p.salt << `=`
|
||||
@@ -64,7 +64,7 @@ pub fn generate_salt() string {
|
||||
}
|
||||
|
||||
// new_from_password converting from password to a Hashed struct with bcrypt.
|
||||
fn new_from_password(password []byte, cost int) ?&Hashed {
|
||||
fn new_from_password(password []u8, cost int) ?&Hashed {
|
||||
mut cost_ := cost
|
||||
if cost < bcrypt.min_cost {
|
||||
cost_ = bcrypt.default_cost
|
||||
@@ -86,7 +86,7 @@ fn new_from_password(password []byte, cost int) ?&Hashed {
|
||||
}
|
||||
|
||||
// new_from_hash converting from hashed data to a Hashed struct.
|
||||
fn new_from_hash(hashed_secret []byte) ?&Hashed {
|
||||
fn new_from_hash(hashed_secret []u8) ?&Hashed {
|
||||
mut tmp := hashed_secret.clone()
|
||||
if tmp.len < bcrypt.min_hash_size {
|
||||
return error('hash to short')
|
||||
@@ -106,8 +106,8 @@ fn new_from_hash(hashed_secret []byte) ?&Hashed {
|
||||
}
|
||||
|
||||
// bcrypt hashing passwords.
|
||||
fn bcrypt(password []byte, cost int, salt []byte) ?[]byte {
|
||||
mut cipher_data := []byte{len: 72 - bcrypt.magic_cipher_data.len, init: 0}
|
||||
fn bcrypt(password []u8, cost int, salt []u8) ?[]u8 {
|
||||
mut cipher_data := []u8{len: 72 - bcrypt.magic_cipher_data.len, init: 0}
|
||||
cipher_data << bcrypt.magic_cipher_data
|
||||
|
||||
mut bf := expensive_blowfish_setup(password, u32(cost), salt) or { return err }
|
||||
@@ -123,7 +123,7 @@ fn bcrypt(password []byte, cost int, salt []byte) ?[]byte {
|
||||
}
|
||||
|
||||
// expensive_blowfish_setup generate a Blowfish cipher, given key, cost and salt.
|
||||
fn expensive_blowfish_setup(key []byte, cost u32, salt []byte) ?&blowfish.Blowfish {
|
||||
fn expensive_blowfish_setup(key []u8, cost u32, salt []u8) ?&blowfish.Blowfish {
|
||||
csalt := base64.decode(salt.bytestr())
|
||||
|
||||
mut bf := blowfish.new_salted_cipher(key, csalt) or { return err }
|
||||
@@ -140,8 +140,8 @@ fn expensive_blowfish_setup(key []byte, cost u32, salt []byte) ?&blowfish.Blowfi
|
||||
}
|
||||
|
||||
// hash_byte converts the hash value to a byte array.
|
||||
fn (mut h Hashed) hash_u8() []byte {
|
||||
mut arr := []byte{len: 65, init: 0}
|
||||
fn (mut h Hashed) hash_u8() []u8 {
|
||||
mut arr := []u8{len: 65, init: 0}
|
||||
arr[0] = `$`
|
||||
arr[1] = h.major[0]
|
||||
mut n := 2
|
||||
@@ -164,7 +164,7 @@ fn (mut h Hashed) hash_u8() []byte {
|
||||
}
|
||||
|
||||
// decode_version decode bcrypt version.
|
||||
fn (mut h Hashed) decode_version(sbytes []byte) ?int {
|
||||
fn (mut h Hashed) decode_version(sbytes []u8) ?int {
|
||||
if sbytes[0] != `$` {
|
||||
return error("bcrypt hashes must start with '$'")
|
||||
}
|
||||
@@ -181,7 +181,7 @@ fn (mut h Hashed) decode_version(sbytes []byte) ?int {
|
||||
}
|
||||
|
||||
// decode_cost extracts the value of cost and returns the next index in the array.
|
||||
fn (mut h Hashed) decode_cost(sbytes []byte) ?int {
|
||||
fn (mut h Hashed) decode_cost(sbytes []u8) ?int {
|
||||
cost := sbytes[0..2].bytestr().int()
|
||||
check_cost(cost) or { return err }
|
||||
h.cost = cost
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
module blowfish
|
||||
|
||||
// expand_key performs a key expansion on the given Blowfish cipher.
|
||||
pub fn expand_key(key []byte, mut bf Blowfish) {
|
||||
pub fn expand_key(key []u8, mut bf Blowfish) {
|
||||
mut j := 0
|
||||
for i := 0; i < 18; i++ {
|
||||
mut d := u32(0)
|
||||
@@ -41,7 +41,7 @@ pub fn expand_key(key []byte, mut bf Blowfish) {
|
||||
}
|
||||
|
||||
// expand_key_with_salt using salt to expand the key.
|
||||
pub fn expand_key_with_salt(key []byte, salt []byte, mut bf Blowfish) {
|
||||
pub fn expand_key_with_salt(key []u8, salt []u8, mut bf Blowfish) {
|
||||
mut j := 0
|
||||
for i := 0; i < 18; i++ {
|
||||
bf.p[i] ^= get_next_word(key, &j)
|
||||
@@ -128,7 +128,7 @@ fn setup_tables(l u32, r u32, mut bf Blowfish) []u32 {
|
||||
|
||||
// get_next_word returns the next big-endian u32 value from the byte
|
||||
// slice at the given position in a circular manner, updating the position.
|
||||
fn get_next_word(b []byte, pos &int) u32 {
|
||||
fn get_next_word(b []u8, pos &int) u32 {
|
||||
mut w := u32(0)
|
||||
mut j := 0
|
||||
unsafe {
|
||||
|
||||
@@ -8,7 +8,7 @@ pub mut:
|
||||
|
||||
// new_cipher creates and returns a new Blowfish cipher.
|
||||
// The key argument should be the Blowfish key, from 1 to 56 bytes.
|
||||
pub fn new_cipher(key []byte) ?Blowfish {
|
||||
pub fn new_cipher(key []u8) ?Blowfish {
|
||||
mut bf := Blowfish{}
|
||||
unsafe { vmemcpy(&bf.p[0], &p[0], int(sizeof(bf.p))) }
|
||||
unsafe { vmemcpy(&bf.s[0], &s[0], int(sizeof(bf.s))) }
|
||||
@@ -21,7 +21,7 @@ pub fn new_cipher(key []byte) ?Blowfish {
|
||||
}
|
||||
|
||||
// new_salted_cipher returns a new Blowfish cipher that folds a salt into its key schedule.
|
||||
pub fn new_salted_cipher(key []byte, salt []byte) ?Blowfish {
|
||||
pub fn new_salted_cipher(key []u8, salt []u8) ?Blowfish {
|
||||
if salt.len == 0 {
|
||||
return new_cipher(key)
|
||||
}
|
||||
@@ -36,7 +36,7 @@ pub fn new_salted_cipher(key []byte, salt []byte) ?Blowfish {
|
||||
}
|
||||
|
||||
// encrypt encrypts the 8-byte buffer src using the key k and stores the result in dst.
|
||||
pub fn (mut bf Blowfish) encrypt(mut dst []byte, src []byte) {
|
||||
pub fn (mut bf Blowfish) encrypt(mut dst []u8, src []u8) {
|
||||
l := u32(src[0]) << 24 | u32(src[1]) << 16 | u32(src[2]) << 8 | u32(src[3])
|
||||
r := u32(src[4]) << 24 | u32(src[5]) << 16 | u32(src[6]) << 8 | u32(src[7])
|
||||
arr := setup_tables(l, r, mut bf)
|
||||
|
||||
@@ -19,13 +19,13 @@ fn test_aes_cbc() {
|
||||
println('test_aes_cbc ok')
|
||||
}
|
||||
|
||||
fn aes_cbc_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_cbc_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.encrypt_blocks(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn aes_cbc_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_cbc_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.decrypt_blocks(mut src, src.clone())
|
||||
|
||||
@@ -16,13 +16,13 @@ fn test_aes_cfb() {
|
||||
println('test_aes_cfb ok')
|
||||
}
|
||||
|
||||
fn aes_cfb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_cfb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_cfb_encrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn aes_cfb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_cfb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_cfb_decrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -16,13 +16,13 @@ fn test_aes_ctr() {
|
||||
println('test_aes_ctr ok')
|
||||
}
|
||||
|
||||
fn aes_ctr_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_ctr_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn aes_ctr_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_ctr_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -18,13 +18,13 @@ fn test_aes_ofb() {
|
||||
println('test_aes_ofb ok')
|
||||
}
|
||||
|
||||
fn aes_ofb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_ofb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn aes_ofb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn aes_ofb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := aes.new_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -15,24 +15,24 @@ struct Cbc {
|
||||
mut:
|
||||
b Block
|
||||
block_size int
|
||||
iv []byte
|
||||
tmp []byte
|
||||
iv []u8
|
||||
tmp []u8
|
||||
}
|
||||
|
||||
// internal
|
||||
fn new_des_cbc(b Block, iv []byte) Cbc {
|
||||
fn new_des_cbc(b Block, iv []u8) Cbc {
|
||||
return Cbc{
|
||||
b: b
|
||||
block_size: b.block_size
|
||||
iv: iv.clone()
|
||||
tmp: []byte{len: b.block_size}
|
||||
tmp: []u8{len: b.block_size}
|
||||
}
|
||||
}
|
||||
|
||||
// new_cbc returns a `DesCbc` which encrypts in cipher block chaining
|
||||
// mode, using the given Block. The length of iv must be the same as the
|
||||
// Block's block size.
|
||||
pub fn new_cbc(b Block, iv []byte) Cbc {
|
||||
pub fn new_cbc(b Block, iv []u8) Cbc {
|
||||
if iv.len != b.block_size {
|
||||
panic('crypto.cipher.new_cbc_encrypter: IV length must equal block size')
|
||||
}
|
||||
@@ -41,7 +41,7 @@ pub fn new_cbc(b Block, iv []byte) Cbc {
|
||||
|
||||
// encrypt_blocks encrypts the blocks in `src_` to `dst_`.
|
||||
// Please note: `dst_` is mutable for performance reasons.
|
||||
pub fn (mut x Cbc) encrypt_blocks(mut dst_ []byte, src_ []byte) {
|
||||
pub fn (mut x Cbc) encrypt_blocks(mut dst_ []u8, src_ []u8) {
|
||||
unsafe {
|
||||
mut dst := *dst_
|
||||
mut src := src_
|
||||
@@ -75,7 +75,7 @@ pub fn (mut x Cbc) encrypt_blocks(mut dst_ []byte, src_ []byte) {
|
||||
|
||||
// decrypt_blocks decrypts the blocks in `src` to `dst`.
|
||||
// Please note: `dst` is mutable for performance reasons.
|
||||
pub fn (mut x Cbc) decrypt_blocks(mut dst []byte, src []byte) {
|
||||
pub fn (mut x Cbc) decrypt_blocks(mut dst []u8, src []u8) {
|
||||
if src.len % x.block_size != 0 {
|
||||
panic('crypto.cipher: input not full blocks')
|
||||
}
|
||||
@@ -113,7 +113,7 @@ pub fn (mut x Cbc) decrypt_blocks(mut dst []byte, src []byte) {
|
||||
x.tmp = x.iv
|
||||
}
|
||||
|
||||
fn (mut x Cbc) set_iv(iv []byte) {
|
||||
fn (mut x Cbc) set_iv(iv []u8) {
|
||||
if iv.len != x.iv.len {
|
||||
panic('cipher: incorrect length IV')
|
||||
}
|
||||
|
||||
@@ -13,8 +13,8 @@ import crypto.internal.subtle
|
||||
struct Cfb {
|
||||
mut:
|
||||
b Block
|
||||
next []byte
|
||||
out []byte
|
||||
next []u8
|
||||
out []u8
|
||||
out_used int
|
||||
|
||||
decrypt bool
|
||||
@@ -23,26 +23,26 @@ mut:
|
||||
// new_cfb_encrypter returns a `Cfb` which encrypts with cipher feedback mode,
|
||||
// using the given Block. The iv must be the same length as the Block's block
|
||||
// size
|
||||
pub fn new_cfb_encrypter(b Block, iv []byte) Cfb {
|
||||
pub fn new_cfb_encrypter(b Block, iv []u8) Cfb {
|
||||
return new_cfb(b, iv, false)
|
||||
}
|
||||
|
||||
// new_cfb_decrypter returns a `Cfb` which decrypts with cipher feedback mode,
|
||||
// using the given Block. The iv must be the same length as the Block's block
|
||||
// size
|
||||
pub fn new_cfb_decrypter(b Block, iv []byte) Cfb {
|
||||
pub fn new_cfb_decrypter(b Block, iv []u8) Cfb {
|
||||
return new_cfb(b, iv, true)
|
||||
}
|
||||
|
||||
fn new_cfb(b Block, iv []byte, decrypt bool) Cfb {
|
||||
fn new_cfb(b Block, iv []u8, decrypt bool) Cfb {
|
||||
block_size := b.block_size
|
||||
if iv.len != block_size {
|
||||
panic('cipher.new_cfb: IV length must be equal block size')
|
||||
}
|
||||
mut x := Cfb{
|
||||
b: b
|
||||
out: []byte{len: b.block_size}
|
||||
next: []byte{len: b.block_size}
|
||||
out: []u8{len: b.block_size}
|
||||
next: []u8{len: b.block_size}
|
||||
out_used: block_size
|
||||
decrypt: decrypt
|
||||
}
|
||||
@@ -50,7 +50,7 @@ fn new_cfb(b Block, iv []byte, decrypt bool) Cfb {
|
||||
return x
|
||||
}
|
||||
|
||||
pub fn (mut x Cfb) xor_key_stream(mut dst_ []byte, src_ []byte) {
|
||||
pub fn (mut x Cfb) xor_key_stream(mut dst_ []u8, src_ []u8) {
|
||||
unsafe {
|
||||
mut dst := *dst_
|
||||
mut src := src_
|
||||
|
||||
@@ -8,9 +8,9 @@ module cipher
|
||||
// extend that capability to streams of blocks.
|
||||
interface Block {
|
||||
block_size int // block_size returns the cipher's block size.
|
||||
encrypt(mut dst []byte, src []byte) // Encrypt encrypts the first block in src into dst.
|
||||
encrypt(mut dst []u8, src []u8) // Encrypt encrypts the first block in src into dst.
|
||||
// Dst and src must overlap entirely or not at all.
|
||||
decrypt(mut dst []byte, src []byte) // Decrypt decrypts the first block in src into dst.
|
||||
decrypt(mut dst []u8, src []u8) // Decrypt decrypts the first block in src into dst.
|
||||
// Dst and src must overlap entirely or not at all.
|
||||
}
|
||||
|
||||
@@ -26,14 +26,14 @@ interface Stream {
|
||||
// Multiple calls to xor_key_stream behave as if the concatenation of
|
||||
// the src buffers was passed in a single run. That is, Stream
|
||||
// maintains state and does not reset at each xor_key_stream call.
|
||||
xor_key_stream(mut dst []byte, src []byte)
|
||||
xor_key_stream(mut dst []u8, src []u8)
|
||||
}
|
||||
|
||||
// A BlockMode represents a block cipher running in a block-based mode (CBC,
|
||||
// ECB etc).
|
||||
interface BlockMode {
|
||||
block_size int // block_size returns the mode's block size.
|
||||
crypt_blocks(mut dst []byte, src []byte) // crypt_blocks encrypts or decrypts a number of blocks. The length of
|
||||
crypt_blocks(mut dst []u8, src []u8) // crypt_blocks encrypts or decrypts a number of blocks. The length of
|
||||
// src must be a multiple of the block size. Dst and src must overlap
|
||||
// entirely or not at all.
|
||||
//
|
||||
@@ -48,8 +48,8 @@ interface BlockMode {
|
||||
|
||||
// Utility routines
|
||||
|
||||
// fn dup(p []byte) []byte {
|
||||
// q := make([]byte, p.len)
|
||||
// fn dup(p []u8) []u8 {
|
||||
// q := make([]u8, p.len)
|
||||
// copy(mut q, p)
|
||||
// return q
|
||||
// }
|
||||
|
||||
@@ -16,27 +16,27 @@ import crypto.internal.subtle
|
||||
struct Ctr {
|
||||
mut:
|
||||
b Block
|
||||
next []byte
|
||||
out []byte
|
||||
next []u8
|
||||
out []u8
|
||||
out_used int
|
||||
}
|
||||
|
||||
// new_ctr returns a Ctr which encrypts/decrypts using the given Block in
|
||||
// counter mode. The length of iv must be the same as the Block's block size.
|
||||
pub fn new_ctr(b Block, iv []byte) Ctr {
|
||||
pub fn new_ctr(b Block, iv []u8) Ctr {
|
||||
block_size := b.block_size
|
||||
if iv.len != block_size {
|
||||
panic('cipher.new_cfb: IV length must be equal block size')
|
||||
}
|
||||
return Ctr{
|
||||
b: b
|
||||
out: []byte{len: b.block_size}
|
||||
out: []u8{len: b.block_size}
|
||||
next: iv.clone()
|
||||
out_used: block_size
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (x &Ctr) xor_key_stream(mut dst_ []byte, src_ []byte) {
|
||||
pub fn (x &Ctr) xor_key_stream(mut dst_ []u8, src_ []u8) {
|
||||
unsafe {
|
||||
mut dst := *dst_
|
||||
mut src := src_
|
||||
|
||||
@@ -29,25 +29,25 @@ fn test_des_cbc() {
|
||||
println('test_des_cbc ok')
|
||||
}
|
||||
|
||||
fn des_cbc_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_cbc_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.encrypt_blocks(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn des_cbc_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_cbc_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.decrypt_blocks(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_cbc_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_cbc_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.encrypt_blocks(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_cbc_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_cbc_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_cbc(block, iv)
|
||||
mode.decrypt_blocks(mut src, src.clone())
|
||||
|
||||
@@ -29,25 +29,25 @@ fn test_des_cfb() {
|
||||
println('test_des_cfb ok')
|
||||
}
|
||||
|
||||
fn des_cfb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_cfb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_cfb_encrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn des_cfb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_cfb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_cfb_decrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_cfb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_cfb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_cfb_encrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_cfb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_cfb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_cfb_decrypter(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -29,25 +29,25 @@ fn test_des_ctr() {
|
||||
println('test_des_ctr ok')
|
||||
}
|
||||
|
||||
fn des_ctr_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_ctr_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn des_ctr_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_ctr_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_ctr_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_ctr_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_ctr_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_ctr_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mode := cipher.new_ctr(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -29,25 +29,25 @@ fn test_des_ofb() {
|
||||
println('test_des_ofb ok')
|
||||
}
|
||||
|
||||
fn des_ofb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_ofb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn des_ofb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_ofb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_ofb_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_ofb_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_ofb_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_ofb_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
mut mode := cipher.new_ofb(block, iv)
|
||||
mode.xor_key_stream(mut src, src.clone())
|
||||
|
||||
@@ -12,30 +12,30 @@ import crypto.internal.subtle
|
||||
struct Ofb {
|
||||
mut:
|
||||
b Block
|
||||
next []byte
|
||||
out []byte
|
||||
next []u8
|
||||
out []u8
|
||||
out_used int
|
||||
}
|
||||
|
||||
// new_ofb returns a Ofb that encrypts or decrypts using the block cipher b
|
||||
// in output feedback mode. The initialization vector iv's length must be equal
|
||||
// to b's block size.
|
||||
pub fn new_ofb(b Block, iv []byte) Ofb {
|
||||
pub fn new_ofb(b Block, iv []u8) Ofb {
|
||||
block_size := b.block_size
|
||||
if iv.len != block_size {
|
||||
panic('cipher.new_ofb: IV length must be equal block size')
|
||||
}
|
||||
mut x := Ofb{
|
||||
b: b
|
||||
out: []byte{len: b.block_size}
|
||||
next: []byte{len: b.block_size}
|
||||
out: []u8{len: b.block_size}
|
||||
next: []u8{len: b.block_size}
|
||||
out_used: block_size
|
||||
}
|
||||
copy(mut x.next, iv)
|
||||
return x
|
||||
}
|
||||
|
||||
pub fn (mut x Ofb) xor_key_stream(mut dst_ []byte, src_ []byte) {
|
||||
pub fn (mut x Ofb) xor_key_stream(mut dst_ []u8, src_ []u8) {
|
||||
unsafe {
|
||||
mut dst := *dst_
|
||||
mut src := src_
|
||||
|
||||
@@ -6,7 +6,7 @@ module cipher
|
||||
// NOTE: Implement other versions (joe-c)
|
||||
// xor_bytes xors the bytes in a and b. The destination should have enough
|
||||
// space, otherwise xor_bytes will panic. Returns the number of bytes xor'd.
|
||||
pub fn xor_bytes(mut dst []byte, a []byte, b []byte) int {
|
||||
pub fn xor_bytes(mut dst []u8, a []u8, b []u8) int {
|
||||
mut n := a.len
|
||||
if b.len < n {
|
||||
n = b.len
|
||||
@@ -20,7 +20,7 @@ pub fn xor_bytes(mut dst []byte, a []byte, b []byte) int {
|
||||
|
||||
// safe_xor_bytes XORs the bytes in `a` and `b` into `dst` it does so `n` times.
|
||||
// Please note: `n` needs to be smaller or equal than the length of `a` and `b`.
|
||||
pub fn safe_xor_bytes(mut dst []byte, a []byte, b []byte, n int) {
|
||||
pub fn safe_xor_bytes(mut dst []u8, a []u8, b []u8, n int) {
|
||||
for i in 0 .. n {
|
||||
dst[i] = a[i] ^ b[i]
|
||||
}
|
||||
@@ -28,6 +28,6 @@ pub fn safe_xor_bytes(mut dst []byte, a []byte, b []byte, n int) {
|
||||
|
||||
// xor_words XORs multiples of 4 or 8 bytes (depending on architecture.)
|
||||
// The slice arguments `a` and `b` are assumed to be of equal length.
|
||||
pub fn xor_words(mut dst []byte, a []byte, b []byte) {
|
||||
pub fn xor_words(mut dst []u8, a []u8, b []u8) {
|
||||
safe_xor_bytes(mut dst, a, b, b.len)
|
||||
}
|
||||
|
||||
@@ -23,7 +23,7 @@ fn feistel(ll u32, rr u32, k0 u64, k1 u64) (u32, u32) {
|
||||
return l, r
|
||||
}
|
||||
|
||||
fn crypt_block(subkeys []u64, mut dst []byte, src []byte, decrypt bool) {
|
||||
fn crypt_block(subkeys []u64, mut dst []u8, src []u8, decrypt bool) {
|
||||
mut b := binary.big_endian_u64(src)
|
||||
b = permute_initial_block(b)
|
||||
|
||||
@@ -51,17 +51,17 @@ fn crypt_block(subkeys []u64, mut dst []byte, src []byte, decrypt bool) {
|
||||
}
|
||||
|
||||
// Encrypt one block from src into dst, using the subkeys.
|
||||
pub fn encrypt_block(subkeys []u64, mut dst []byte, src []byte) {
|
||||
pub fn encrypt_block(subkeys []u64, mut dst []u8, src []u8) {
|
||||
crypt_block(subkeys, mut dst, src, false)
|
||||
}
|
||||
|
||||
// Decrypt one block from src into dst, using the subkeys.
|
||||
fn decrypt_block(subkeys []u64, mut dst []byte, src []byte) {
|
||||
fn decrypt_block(subkeys []u64, mut dst []u8, src []u8) {
|
||||
crypt_block(subkeys, mut dst, src, true)
|
||||
}
|
||||
|
||||
// general purpose function to perform DES block permutations
|
||||
fn permute_block(src u64, permutation []byte) u64 {
|
||||
fn permute_block(src u64, permutation []u8) u64 {
|
||||
mut block := u64(0)
|
||||
for position, n in permutation {
|
||||
bit := (src >> u64(u8(n))) & 1
|
||||
|
||||
@@ -25,7 +25,7 @@ mut:
|
||||
}
|
||||
|
||||
// NewCipher creates and returns a new cipher.Block.
|
||||
pub fn new_cipher(key []byte) cipher.Block {
|
||||
pub fn new_cipher(key []u8) cipher.Block {
|
||||
if key.len != 8 {
|
||||
panic('crypto.aes: invalid key size')
|
||||
}
|
||||
@@ -36,7 +36,7 @@ pub fn new_cipher(key []byte) cipher.Block {
|
||||
}
|
||||
|
||||
// creates 16 56-bit subkeys from the original key
|
||||
fn (mut c DesCipher) generate_subkeys(key_bytes []byte) {
|
||||
fn (mut c DesCipher) generate_subkeys(key_bytes []u8) {
|
||||
// feistel_box_once.do(initFeistel_box)
|
||||
|
||||
// apply PC1 permutation to key
|
||||
@@ -56,7 +56,7 @@ fn (mut c DesCipher) generate_subkeys(key_bytes []byte) {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn (c &DesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &DesCipher) encrypt(mut dst []u8, src []u8) {
|
||||
if src.len < des.block_size {
|
||||
panic('crypto/des: input not full block')
|
||||
}
|
||||
@@ -69,7 +69,7 @@ pub fn (c &DesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
encrypt_block(c.subkeys[..], mut dst, src)
|
||||
}
|
||||
|
||||
pub fn (c &DesCipher) decrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &DesCipher) decrypt(mut dst []u8, src []u8) {
|
||||
if src.len < des.block_size {
|
||||
panic('crypto/des: input not full block')
|
||||
}
|
||||
@@ -83,7 +83,7 @@ pub fn (c &DesCipher) decrypt(mut dst []byte, src []byte) {
|
||||
}
|
||||
|
||||
// NewTripleDesCipher creates and returns a new cipher.Block.
|
||||
pub fn new_triple_des_cipher(key []byte) cipher.Block {
|
||||
pub fn new_triple_des_cipher(key []u8) cipher.Block {
|
||||
if key.len != 24 {
|
||||
panic('crypto.des: invalid key size')
|
||||
}
|
||||
@@ -94,7 +94,7 @@ pub fn new_triple_des_cipher(key []byte) cipher.Block {
|
||||
return c
|
||||
}
|
||||
|
||||
pub fn (c &TripleDesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &TripleDesCipher) encrypt(mut dst []u8, src []u8) {
|
||||
if src.len < des.block_size {
|
||||
panic('crypto/des: input not full block')
|
||||
}
|
||||
@@ -130,7 +130,7 @@ pub fn (c &TripleDesCipher) encrypt(mut dst []byte, src []byte) {
|
||||
binary.big_endian_put_u64(mut dst, permute_final_block(pre_output))
|
||||
}
|
||||
|
||||
pub fn (c &TripleDesCipher) decrypt(mut dst []byte, src []byte) {
|
||||
pub fn (c &TripleDesCipher) decrypt(mut dst []u8, src []u8) {
|
||||
if src.len < des.block_size {
|
||||
panic('crypto/des: input not full block')
|
||||
}
|
||||
|
||||
@@ -29,22 +29,22 @@ fn test_des() {
|
||||
println('test_des ok')
|
||||
}
|
||||
|
||||
fn des_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
block.encrypt(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn des_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn des_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_cipher(key)
|
||||
block.decrypt(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_en(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_en(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
block.encrypt(mut src, src.clone())
|
||||
}
|
||||
|
||||
fn triple_des_de(mut src []byte, key []byte, iv []byte) {
|
||||
fn triple_des_de(mut src []u8, key []u8, iv []u8) {
|
||||
block := des.new_triple_des_cipher(key)
|
||||
inbuf := src.clone()
|
||||
block.decrypt(mut src, inbuf)
|
||||
|
||||
@@ -18,39 +18,39 @@ pub const signature_size = 64
|
||||
pub const seed_size = 32
|
||||
|
||||
// `PublicKey` is Ed25519 public keys.
|
||||
pub type PublicKey = []byte
|
||||
pub type PublicKey = []u8
|
||||
|
||||
// equal reports whether p and x have the same value.
|
||||
pub fn (p PublicKey) equal(x []byte) bool {
|
||||
pub fn (p PublicKey) equal(x []u8) bool {
|
||||
return subtle.constant_time_compare(p, PublicKey(x)) == 1
|
||||
}
|
||||
|
||||
// PrivateKey is Ed25519 private keys
|
||||
pub type PrivateKey = []byte
|
||||
pub type PrivateKey = []u8
|
||||
|
||||
// seed returns the private key seed corresponding to priv.
|
||||
// RFC 8032's private keys correspond to seeds in this module.
|
||||
pub fn (priv PrivateKey) seed() []byte {
|
||||
mut seed := []byte{len: ed25519.seed_size}
|
||||
pub fn (priv PrivateKey) seed() []u8 {
|
||||
mut seed := []u8{len: ed25519.seed_size}
|
||||
copy(mut seed, priv[..32])
|
||||
return seed
|
||||
}
|
||||
|
||||
// public_key returns the []byte corresponding to priv.
|
||||
// public_key returns the []u8 corresponding to priv.
|
||||
pub fn (priv PrivateKey) public_key() PublicKey {
|
||||
assert priv.len == ed25519.private_key_size
|
||||
mut publickey := []byte{len: ed25519.public_key_size}
|
||||
mut publickey := []u8{len: ed25519.public_key_size}
|
||||
copy(mut publickey, priv[32..])
|
||||
return PublicKey(publickey)
|
||||
}
|
||||
|
||||
// currentyly x not `crypto.PrivateKey`
|
||||
pub fn (priv PrivateKey) equal(x []byte) bool {
|
||||
pub fn (priv PrivateKey) equal(x []u8) bool {
|
||||
return subtle.constant_time_compare(priv, PrivateKey(x)) == 1
|
||||
}
|
||||
|
||||
// sign signs the given message with priv.
|
||||
pub fn (priv PrivateKey) sign(message []byte) ?[]byte {
|
||||
pub fn (priv PrivateKey) sign(message []u8) ?[]u8 {
|
||||
/*
|
||||
if opts.HashFunc() != crypto.Hash(0) {
|
||||
return nil, errors.New("ed25519: cannot sign hashed message")
|
||||
@@ -60,13 +60,13 @@ pub fn (priv PrivateKey) sign(message []byte) ?[]byte {
|
||||
}
|
||||
|
||||
// sign`signs the message with privatekey and returns a signature
|
||||
pub fn sign(privatekey PrivateKey, message []byte) ?[]byte {
|
||||
mut signature := []byte{len: ed25519.signature_size}
|
||||
pub fn sign(privatekey PrivateKey, message []u8) ?[]u8 {
|
||||
mut signature := []u8{len: ed25519.signature_size}
|
||||
sign_generic(mut signature, privatekey, message) ?
|
||||
return signature
|
||||
}
|
||||
|
||||
fn sign_generic(mut signature []byte, privatekey []byte, message []byte) ? {
|
||||
fn sign_generic(mut signature []u8, privatekey []u8, message []u8) ? {
|
||||
if privatekey.len != ed25519.private_key_size {
|
||||
panic('ed25519: bad private key length: $privatekey.len')
|
||||
}
|
||||
@@ -81,7 +81,7 @@ fn sign_generic(mut signature []byte, privatekey []byte, message []byte) ? {
|
||||
mh.write(prefix) ?
|
||||
mh.write(message) ?
|
||||
|
||||
mut msg_digest := []byte{cap: sha512.size}
|
||||
mut msg_digest := []u8{cap: sha512.size}
|
||||
msg_digest = mh.sum(msg_digest)
|
||||
|
||||
mut r := edwards25519.new_scalar()
|
||||
@@ -95,7 +95,7 @@ fn sign_generic(mut signature []byte, privatekey []byte, message []byte) ? {
|
||||
kh.write(publickey) ?
|
||||
kh.write(message) ?
|
||||
|
||||
mut hram_digest := []byte{cap: sha512.size}
|
||||
mut hram_digest := []u8{cap: sha512.size}
|
||||
hram_digest = kh.sum(hram_digest)
|
||||
mut k := edwards25519.new_scalar()
|
||||
k.set_uniform_bytes(hram_digest) ?
|
||||
@@ -108,7 +108,7 @@ fn sign_generic(mut signature []byte, privatekey []byte, message []byte) ? {
|
||||
}
|
||||
|
||||
// verify reports whether sig is a valid signature of message by publickey.
|
||||
pub fn verify(publickey PublicKey, message []byte, sig []byte) ?bool {
|
||||
pub fn verify(publickey PublicKey, message []u8, sig []u8) ?bool {
|
||||
if publickey.len != ed25519.public_key_size {
|
||||
return error('ed25519: bad public key length: $publickey.len')
|
||||
}
|
||||
@@ -125,7 +125,7 @@ pub fn verify(publickey PublicKey, message []byte, sig []byte) ?bool {
|
||||
kh.write(publickey) ?
|
||||
kh.write(message) ?
|
||||
|
||||
mut hram_digest := []byte{cap: sha512.size}
|
||||
mut hram_digest := []u8{cap: sha512.size}
|
||||
hram_digest = kh.sum(hram_digest)
|
||||
|
||||
mut k := edwards25519.new_scalar()
|
||||
@@ -148,7 +148,7 @@ pub fn generate_key() ?(PublicKey, PrivateKey) {
|
||||
mut seed := rand.bytes(ed25519.seed_size) ?
|
||||
|
||||
privatekey := new_key_from_seed(seed)
|
||||
mut publickey := []byte{len: ed25519.public_key_size}
|
||||
mut publickey := []u8{len: ed25519.public_key_size}
|
||||
copy(mut publickey, privatekey[32..])
|
||||
|
||||
return publickey, privatekey
|
||||
@@ -156,14 +156,14 @@ pub fn generate_key() ?(PublicKey, PrivateKey) {
|
||||
|
||||
// new_key_from_seed calculates a private key from a seed. private keys of RFC 8032
|
||||
// correspond to seeds in this module
|
||||
pub fn new_key_from_seed(seed []byte) PrivateKey {
|
||||
pub fn new_key_from_seed(seed []u8) PrivateKey {
|
||||
// Outline the function body so that the returned key can be stack-allocated.
|
||||
mut privatekey := []byte{len: ed25519.private_key_size}
|
||||
mut privatekey := []u8{len: ed25519.private_key_size}
|
||||
new_key_from_seed_generic(mut privatekey, seed)
|
||||
return PrivateKey(privatekey)
|
||||
}
|
||||
|
||||
fn new_key_from_seed_generic(mut privatekey []byte, seed []byte) {
|
||||
fn new_key_from_seed_generic(mut privatekey []u8, seed []u8) {
|
||||
if seed.len != ed25519.seed_size {
|
||||
panic('ed25519: bad seed length: $seed.len')
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ const contents = os.read_lines(os.join_path(testdata, 'sign.input')) or { panic(
|
||||
/*
|
||||
struct ZeroReader {}
|
||||
|
||||
fn (z ZeroReader) read(mut buf []byte) ?int {
|
||||
fn (z ZeroReader) read(mut buf []u8) ?int {
|
||||
for i, _ in buf {
|
||||
buf[i] = 0
|
||||
}
|
||||
@@ -96,7 +96,7 @@ fn works_check_on_sign_input_string(item string) bool {
|
||||
// assert pubkey.len == public_key_size
|
||||
|
||||
sig = sig[..ed25519.signature_size]
|
||||
mut priv := []byte{len: ed25519.private_key_size}
|
||||
mut priv := []u8{len: ed25519.private_key_size}
|
||||
copy(mut priv[..], privbytes)
|
||||
copy(mut priv[32..], pubkey)
|
||||
|
||||
@@ -181,7 +181,7 @@ fn test_input_from_djb_ed25519_crypto_sign_input_without_syncpool() ? {
|
||||
assert pubkey.len == public_key_size
|
||||
|
||||
sig = sig[..signature_size]
|
||||
mut priv := []byte{len: ed25519.private_key_size}
|
||||
mut priv := []u8{len: ed25519.private_key_size}
|
||||
copy(mut priv[..], privbytes)
|
||||
copy(mut priv[32..], pubkey)
|
||||
|
||||
|
||||
@@ -624,7 +624,7 @@ pub fn (mut v Element) set(a Element) Element {
|
||||
// Consistent with RFC 7748, the most significant bit (the high bit of the
|
||||
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
|
||||
// are accepted. Note that this is laxer than specified by RFC 8032.
|
||||
pub fn (mut v Element) set_bytes(x []byte) ?Element {
|
||||
pub fn (mut v Element) set_bytes(x []u8) ?Element {
|
||||
if x.len != 32 {
|
||||
return error('edwards25519: invalid edwards25519 element input size')
|
||||
}
|
||||
@@ -650,19 +650,19 @@ pub fn (mut v Element) set_bytes(x []byte) ?Element {
|
||||
}
|
||||
|
||||
// bytes returns the canonical 32-byte little-endian encoding of v.
|
||||
pub fn (mut v Element) bytes() []byte {
|
||||
pub fn (mut v Element) bytes() []u8 {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
// out := v.bytes_generic()
|
||||
return v.bytes_generic()
|
||||
}
|
||||
|
||||
fn (mut v Element) bytes_generic() []byte {
|
||||
mut out := []byte{len: 32}
|
||||
fn (mut v Element) bytes_generic() []u8 {
|
||||
mut out := []u8{len: 32}
|
||||
|
||||
v = v.reduce()
|
||||
|
||||
mut buf := []byte{len: 8}
|
||||
mut buf := []u8{len: 8}
|
||||
idxs := [v.l0, v.l1, v.l2, v.l3, v.l4]
|
||||
for i, l in idxs {
|
||||
bits_offset := i * 51
|
||||
@@ -725,7 +725,7 @@ pub fn (mut v Element) mult_32(x Element, y u32) Element {
|
||||
return v
|
||||
}
|
||||
|
||||
fn swap_endianness(mut buf []byte) []byte {
|
||||
fn swap_endianness(mut buf []u8) []u8 {
|
||||
for i := 0; i < buf.len / 2; i++ {
|
||||
buf[i], buf[buf.len - i - 1] = buf[buf.len - i - 1], buf[i]
|
||||
}
|
||||
|
||||
@@ -230,7 +230,7 @@ fn test_set_bytes_reduced() {
|
||||
struct FeRTTest {
|
||||
mut:
|
||||
fe Element
|
||||
b []byte
|
||||
b []u8
|
||||
}
|
||||
|
||||
fn test_set_bytes_from_dalek_test_vectors() ? {
|
||||
@@ -395,7 +395,7 @@ fn test_bytes_big_equivalence() ? {
|
||||
|
||||
assert fe == fe1
|
||||
|
||||
mut buf := []byte{len: 32} // pad with zeroes
|
||||
mut buf := []u8{len: 32} // pad with zeroes
|
||||
fedtobig := fe1.to_big_integer()
|
||||
mut fedbig_bytes, _ := fedtobig.bytes()
|
||||
copy(mut buf, fedbig_bytes) // does not need to do swap_endianness
|
||||
|
||||
@@ -86,14 +86,14 @@ fn is_on_curve(x Element, y Element, z Element, t Element) bool {
|
||||
// Note that bytes_montgomery only encodes the u-coordinate, so v and -v encode
|
||||
// to the same value. If v is the identity point, bytes_montgomery returns 32
|
||||
// zero bytes, analogously to the X25519 function.
|
||||
pub fn (mut v Point) bytes_montgomery() []byte {
|
||||
pub fn (mut v Point) bytes_montgomery() []u8 {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
mut buf := [32]byte{}
|
||||
return v.bytes_montgomery_generic(mut buf)
|
||||
}
|
||||
|
||||
fn (mut v Point) bytes_montgomery_generic(mut buf [32]byte) []byte {
|
||||
fn (mut v Point) bytes_montgomery_generic(mut buf [32]byte) []u8 {
|
||||
check_initialized(v)
|
||||
|
||||
// RFC 7748, Section 4.1 provides the bilinear map to calculate the
|
||||
|
||||
@@ -70,7 +70,7 @@ const (
|
||||
loworder_bytes = hex.decode(loworder_string) or { panic(err) }
|
||||
)
|
||||
|
||||
fn fn_cofactor(mut data []byte) bool {
|
||||
fn fn_cofactor(mut data []u8) bool {
|
||||
if data.len != 64 {
|
||||
panic('data.len should be 64')
|
||||
}
|
||||
|
||||
@@ -117,7 +117,7 @@ fn (mut v ProjectiveP2) zero() ProjectiveP2 {
|
||||
// Note that set_bytes accepts all non-canonical encodings of valid points.
|
||||
// That is, it follows decoding rules that match most implementations in
|
||||
// the ecosystem rather than RFC 8032.
|
||||
pub fn (mut v Point) set_bytes(x []byte) ?Point {
|
||||
pub fn (mut v Point) set_bytes(x []u8) ?Point {
|
||||
// Specifically, the non-canonical encodings that are accepted are
|
||||
// 1) the ones where the edwards25519 element is not reduced (see the
|
||||
// (*edwards25519.Element).set_bytes docs) and
|
||||
@@ -201,14 +201,14 @@ fn (mut v AffineCached) zero() AffineCached {
|
||||
|
||||
// bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
|
||||
// Section 5.1.2.
|
||||
pub fn (mut v Point) bytes() []byte {
|
||||
pub fn (mut v Point) bytes() []u8 {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
mut buf := [32]byte{}
|
||||
return v.bytes_generic(mut buf)
|
||||
}
|
||||
|
||||
fn (mut v Point) bytes_generic(mut buf [32]byte) []byte {
|
||||
fn (mut v Point) bytes_generic(mut buf [32]byte) []u8 {
|
||||
check_initialized(v)
|
||||
|
||||
mut zinv := Element{}
|
||||
@@ -226,7 +226,7 @@ fn (mut v Point) bytes_generic(mut buf [32]byte) []byte {
|
||||
return out
|
||||
}
|
||||
|
||||
fn copy_field_element(mut buf [32]byte, mut v Element) []byte {
|
||||
fn copy_field_element(mut buf [32]byte, mut v Element) []u8 {
|
||||
// this fail in test
|
||||
/*
|
||||
copy(mut buf[..], v.bytes())
|
||||
@@ -234,7 +234,7 @@ fn copy_field_element(mut buf [32]byte, mut v Element) []byte {
|
||||
*/
|
||||
|
||||
// this pass the test
|
||||
mut out := []byte{len: 32}
|
||||
mut out := []u8{len: 32}
|
||||
for i := 0; i <= buf.len - 1; i++ {
|
||||
out[i] = v.bytes()[i]
|
||||
}
|
||||
|
||||
@@ -86,11 +86,11 @@ pub fn (mut s Scalar) set(x Scalar) Scalar {
|
||||
// set_uniform_bytes sets s to an uniformly distributed value given 64 uniformly
|
||||
// distributed random bytes. If x is not of the right length, set_uniform_bytes
|
||||
// returns an error, and the receiver is unchanged.
|
||||
pub fn (mut s Scalar) set_uniform_bytes(x []byte) ?Scalar {
|
||||
pub fn (mut s Scalar) set_uniform_bytes(x []u8) ?Scalar {
|
||||
if x.len != 64 {
|
||||
return error('edwards25519: invalid set_uniform_bytes input length')
|
||||
}
|
||||
mut wide_bytes := []byte{len: 64}
|
||||
mut wide_bytes := []u8{len: 64}
|
||||
copy(mut wide_bytes, x)
|
||||
// for i, item in x {
|
||||
// wide_bytes[i] = item
|
||||
@@ -102,11 +102,11 @@ pub fn (mut s Scalar) set_uniform_bytes(x []byte) ?Scalar {
|
||||
// set_canonical_bytes sets s = x, where x is a 32-byte little-endian encoding of
|
||||
// s, and returns s. If x is not a canonical encoding of s, set_canonical_bytes
|
||||
// returns an error, and the receiver is unchanged.
|
||||
pub fn (mut s Scalar) set_canonical_bytes(x []byte) ?Scalar {
|
||||
pub fn (mut s Scalar) set_canonical_bytes(x []u8) ?Scalar {
|
||||
if x.len != 32 {
|
||||
return error('invalid scalar length')
|
||||
}
|
||||
// mut bb := []byte{len:32}
|
||||
// mut bb := []u8{len:32}
|
||||
mut ss := Scalar{}
|
||||
for i, item in x {
|
||||
ss.s[i] = item
|
||||
@@ -152,7 +152,7 @@ fn is_reduced(s Scalar) bool {
|
||||
// expected as long as it is applied to points on the prime order subgroup, like
|
||||
// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the
|
||||
// irrelevant RFC 7748 clamping, but it is now required for compatibility.
|
||||
pub fn (mut s Scalar) set_bytes_with_clamping(x []byte) ?Scalar {
|
||||
pub fn (mut s Scalar) set_bytes_with_clamping(x []u8) ?Scalar {
|
||||
// The description above omits the purpose of the high bits of the clamping
|
||||
// for brevity, but those are also lost to reductions, and are also
|
||||
// irrelevant to edwards25519 as they protect against a specific
|
||||
@@ -161,7 +161,7 @@ pub fn (mut s Scalar) set_bytes_with_clamping(x []byte) ?Scalar {
|
||||
return error('edwards25519: invalid set_bytes_with_clamping input length')
|
||||
}
|
||||
|
||||
mut wide_bytes := []byte{len: 64, cap: 64}
|
||||
mut wide_bytes := []u8{len: 64, cap: 64}
|
||||
copy(mut wide_bytes, x)
|
||||
// for i, item in x {
|
||||
// wide_bytes[i] = item
|
||||
@@ -174,8 +174,8 @@ pub fn (mut s Scalar) set_bytes_with_clamping(x []byte) ?Scalar {
|
||||
}
|
||||
|
||||
// bytes returns the canonical 32-byte little-endian encoding of s.
|
||||
pub fn (mut s Scalar) bytes() []byte {
|
||||
mut buf := []byte{len: 32}
|
||||
pub fn (mut s Scalar) bytes() []u8 {
|
||||
mut buf := []u8{len: 32}
|
||||
copy(mut buf, s.s[..])
|
||||
return buf
|
||||
}
|
||||
@@ -187,14 +187,14 @@ pub fn (s Scalar) equal(t Scalar) int {
|
||||
|
||||
// sc_mul_add and sc_reduce are ported from the public domain, “ref10”
|
||||
// implementation of ed25519 from SUPERCOP.
|
||||
fn load3(inp []byte) i64 {
|
||||
fn load3(inp []u8) i64 {
|
||||
mut r := i64(inp[0])
|
||||
r |= i64(inp[1]) * 256 // << 8
|
||||
r |= i64(inp[2]) * 65536 // << 16
|
||||
return r
|
||||
}
|
||||
|
||||
fn load4(inp []byte) i64 {
|
||||
fn load4(inp []u8) i64 {
|
||||
mut r := i64(inp[0])
|
||||
r |= i64(inp[1]) * 256
|
||||
r |= i64(inp[2]) * 65536
|
||||
@@ -653,7 +653,7 @@ fn sc_mul_add(mut s [32]byte, a [32]byte, b [32]byte, c [32]byte) {
|
||||
// Output:
|
||||
// s[0]+256*s[1]+...+256^31*s[31] = s mod l
|
||||
// where l = 2^252 + 27742317777372353535851937790883648493.
|
||||
fn sc_reduce(mut out [32]byte, mut s []byte) {
|
||||
fn sc_reduce(mut out [32]byte, mut s []u8) {
|
||||
assert out.len == 32
|
||||
assert s.len == 64
|
||||
mut s0 := 2097151 & load3(s[..])
|
||||
|
||||
@@ -134,7 +134,7 @@ fn test_scalar_set_uniform_bytes() ? {
|
||||
assert m.abs_cmp(scbig) == 0 // NEED FIX
|
||||
}
|
||||
|
||||
fn bigint_from_le_bytes(b []byte) big.Integer {
|
||||
fn bigint_from_le_bytes(b []u8) big.Integer {
|
||||
mut bc := b.clone()
|
||||
buf := swap_endianness(mut bc) // WITHOUT THIS, some test would fail
|
||||
bg := big.integer_from_bytes(buf)
|
||||
|
||||
@@ -5,14 +5,14 @@ module hmac
|
||||
import crypto.internal.subtle
|
||||
|
||||
const (
|
||||
ipad = []byte{len: 256, init: 0x36} // TODO is 256 enough??
|
||||
opad = []byte{len: 256, init: 0x5C}
|
||||
npad = []byte{len: 256, init: 0}
|
||||
ipad = []u8{len: 256, init: 0x36} // TODO is 256 enough??
|
||||
opad = []u8{len: 256, init: 0x5C}
|
||||
npad = []u8{len: 256, init: 0}
|
||||
)
|
||||
|
||||
// new returns a HMAC byte array, depending on the hash algorithm used.
|
||||
pub fn new(key []byte, data []byte, hash_func fn ([]byte) []byte, blocksize int) []byte {
|
||||
mut b_key := []byte{}
|
||||
pub fn new(key []u8, data []u8, hash_func fn ([]u8) []u8, blocksize int) []u8 {
|
||||
mut b_key := []u8{}
|
||||
if key.len <= blocksize {
|
||||
b_key = key.clone() // TODO: remove .clone() once https://github.com/vlang/v/issues/6604 gets fixed
|
||||
} else {
|
||||
@@ -21,13 +21,13 @@ pub fn new(key []byte, data []byte, hash_func fn ([]byte) []byte, blocksize int)
|
||||
if b_key.len < blocksize {
|
||||
b_key << hmac.npad[..blocksize - b_key.len]
|
||||
}
|
||||
mut inner := []byte{}
|
||||
mut inner := []u8{}
|
||||
for i, b in hmac.ipad[..blocksize] {
|
||||
inner << b_key[i] ^ b
|
||||
}
|
||||
inner << data
|
||||
inner_hash := hash_func(inner)
|
||||
mut outer := []byte{cap: b_key.len}
|
||||
mut outer := []u8{cap: b_key.len}
|
||||
for i, b in hmac.opad[..blocksize] {
|
||||
outer << b_key[i] ^ b
|
||||
}
|
||||
@@ -39,6 +39,6 @@ pub fn new(key []byte, data []byte, hash_func fn ([]byte) []byte, blocksize int)
|
||||
// equal compares 2 MACs for equality, without leaking timing info.
|
||||
// Note: if the lengths of the 2 MACs are different, probably a completely different
|
||||
// hash function was used to generate them => no useful timing information.
|
||||
pub fn equal(mac1 []byte, mac2 []byte) bool {
|
||||
pub fn equal(mac1 []u8, mac2 []u8) bool {
|
||||
return subtle.constant_time_compare(mac1, mac2) == 1
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ module subtle
|
||||
// NOTE: require unsafe in future
|
||||
// any_overlap reports whether x and y share memory at any (not necessarily
|
||||
// corresponding) index. The memory beyond the slice length is ignored.
|
||||
pub fn any_overlap(x []byte, y []byte) bool {
|
||||
pub fn any_overlap(x []u8, y []u8) bool {
|
||||
// NOTE: Remember to come back to this (joe-c)
|
||||
return x.len > 0 && y.len > 0 && // &x.data[0] <= &y.data[y.len-1] &&
|
||||
// &y.data[0] <= &x.data[x.len-1]
|
||||
@@ -21,7 +21,7 @@ pub fn any_overlap(x []byte, y []byte) bool {
|
||||
//
|
||||
// inexact_overlap can be used to implement the requirements of the crypto/cipher
|
||||
// AEAD, Block, BlockMode and Stream interfaces.
|
||||
pub fn inexact_overlap(x []byte, y []byte) bool {
|
||||
pub fn inexact_overlap(x []u8, y []u8) bool {
|
||||
if x.len == 0 || y.len == 0 || unsafe { &x[0] == &y[0] } {
|
||||
return false
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ pub fn constant_time_select(v int, x int, y int) int {
|
||||
// constant_time_compare returns 1 when x and y have equal contents.
|
||||
// The runtime of this function is proportional of the length of x and y.
|
||||
// It is *NOT* dependent on their content.
|
||||
pub fn constant_time_compare(x []byte, y []byte) int {
|
||||
pub fn constant_time_compare(x []u8, y []u8) int {
|
||||
if x.len != y.len {
|
||||
return 0
|
||||
}
|
||||
@@ -33,7 +33,7 @@ pub fn constant_time_compare(x []byte, y []byte) int {
|
||||
// constant_time_copy copies the contents of y into x, when v == 1.
|
||||
// When v == 0, x is left unchanged. this function is undefined, when
|
||||
// v takes any other value
|
||||
pub fn constant_time_copy(v int, mut x []byte, y []byte) {
|
||||
pub fn constant_time_copy(v int, mut x []u8, y []u8) {
|
||||
if x.len != y.len {
|
||||
panic('subtle: arrays have different lengths')
|
||||
}
|
||||
|
||||
@@ -28,14 +28,14 @@ const (
|
||||
struct Digest {
|
||||
mut:
|
||||
s []u32
|
||||
x []byte
|
||||
x []u8
|
||||
nx int
|
||||
len u64
|
||||
}
|
||||
|
||||
fn (mut d Digest) reset() {
|
||||
d.s = []u32{len: (4)}
|
||||
d.x = []byte{len: md5.block_size}
|
||||
d.x = []u8{len: md5.block_size}
|
||||
d.s[0] = u32(md5.init0)
|
||||
d.s[1] = u32(md5.init1)
|
||||
d.s[2] = u32(md5.init2)
|
||||
@@ -52,7 +52,7 @@ pub fn new() &Digest {
|
||||
}
|
||||
|
||||
// write writes the contents of `p_` to the internal hash representation.
|
||||
pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
pub fn (mut d Digest) write(p_ []u8) ?int {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
nn := p.len
|
||||
@@ -87,7 +87,7 @@ pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
}
|
||||
|
||||
// sum returns the md5 sum of the bytes in `b_in`.
|
||||
pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
pub fn (d &Digest) sum(b_in []u8) []u8 {
|
||||
// Make a copy of d so that caller can keep writing and summing.
|
||||
mut d0 := *d
|
||||
hash := d0.checksum()
|
||||
@@ -99,14 +99,14 @@ pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
}
|
||||
|
||||
// checksum returns the byte checksum of the `Digest`.
|
||||
pub fn (mut d Digest) checksum() []byte {
|
||||
pub fn (mut d Digest) checksum() []u8 {
|
||||
// Append 0x80 to the end of the message and then append zeros
|
||||
// until the length is a multiple of 56 bytes. Finally append
|
||||
// 8 bytes representing the message length in bits.
|
||||
//
|
||||
// 1 byte end marker :: 0-63 padding bytes :: 8 byte length
|
||||
// tmp := [1 + 63 + 8]byte{0x80}
|
||||
mut tmp := []byte{len: (1 + 63 + 8)}
|
||||
mut tmp := []u8{len: (1 + 63 + 8)}
|
||||
tmp[0] = 0x80
|
||||
pad := ((55 - d.len) % 64) // calculate number of padding bytes
|
||||
binary.little_endian_put_u64(mut tmp[1 + pad..], d.len << 3) // append length in bits
|
||||
@@ -116,7 +116,7 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
if d.nx != 0 {
|
||||
panic('d.nx != 0')
|
||||
}
|
||||
mut digest := []byte{len: md5.size}
|
||||
mut digest := []u8{len: md5.size}
|
||||
binary.little_endian_put_u32(mut digest, d.s[0])
|
||||
binary.little_endian_put_u32(mut digest[4..], d.s[1])
|
||||
binary.little_endian_put_u32(mut digest[8..], d.s[2])
|
||||
@@ -125,13 +125,13 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
}
|
||||
|
||||
// sum returns the MD5 checksum of the data.
|
||||
pub fn sum(data []byte) []byte {
|
||||
pub fn sum(data []u8) []u8 {
|
||||
mut d := new()
|
||||
d.write(data) or { panic(err) }
|
||||
return d.checksum()
|
||||
}
|
||||
|
||||
fn block(mut dig Digest, p []byte) {
|
||||
fn block(mut dig Digest, p []u8) {
|
||||
// For now just use block_generic until we have specific
|
||||
// architecture optimized versions
|
||||
block_generic(mut dig, p)
|
||||
|
||||
@@ -11,7 +11,7 @@ module md5
|
||||
import math.bits
|
||||
import encoding.binary
|
||||
|
||||
fn block_generic(mut dig Digest, p []byte) {
|
||||
fn block_generic(mut dig Digest, p []u8) {
|
||||
// load state
|
||||
mut a := dig.s[0]
|
||||
mut b := dig.s[1]
|
||||
|
||||
@@ -18,6 +18,6 @@ pub fn (err ReadError) msg() string {
|
||||
// See also rand.bytes(), if you do not need really random bytes,
|
||||
// but instead pseudo random ones, from a pseudo random generator
|
||||
// that can be seeded, and that is usually faster.
|
||||
pub fn bytes(bytes_needed int) ?[]byte {
|
||||
pub fn bytes(bytes_needed int) ?[]u8 {
|
||||
return read(bytes_needed)
|
||||
}
|
||||
|
||||
@@ -11,8 +11,8 @@ module rand
|
||||
fn C.SecRandomCopyBytes(rnd C.SecRandomRef, count usize, bytes voidptr) int
|
||||
|
||||
// read returns an array of `bytes_needed` random bytes read from the OS.
|
||||
pub fn read(bytes_needed int) ?[]byte {
|
||||
mut buffer := []byte{len: bytes_needed}
|
||||
pub fn read(bytes_needed int) ?[]u8 {
|
||||
mut buffer := []u8{len: bytes_needed}
|
||||
status := C.SecRandomCopyBytes(C.SecRandomRef(0), bytes_needed, buffer.data)
|
||||
if status != 0 {
|
||||
return IError(&ReadError{})
|
||||
|
||||
@@ -4,6 +4,6 @@
|
||||
module rand
|
||||
|
||||
// read returns an array of `bytes_needed` random bytes read from the OS.
|
||||
pub fn read(bytes_needed int) ?[]byte {
|
||||
pub fn read(bytes_needed int) ?[]u8 {
|
||||
return error('rand.read is not implemented on this platform')
|
||||
}
|
||||
|
||||
@@ -10,7 +10,7 @@ const (
|
||||
)
|
||||
|
||||
// read returns an array of `bytes_needed` random bytes read from the OS.
|
||||
pub fn read(bytes_needed int) ?[]byte {
|
||||
pub fn read(bytes_needed int) ?[]u8 {
|
||||
mut buffer := unsafe { vcalloc_noscan(bytes_needed) }
|
||||
mut bytes_read := 0
|
||||
mut remaining_bytes := bytes_needed
|
||||
|
||||
@@ -13,7 +13,7 @@ const (
|
||||
)
|
||||
|
||||
// read returns an array of `bytes_needed` random bytes read from the OS.
|
||||
pub fn read(bytes_needed int) ?[]byte {
|
||||
pub fn read(bytes_needed int) ?[]u8 {
|
||||
mut buffer := unsafe { malloc_noscan(bytes_needed) }
|
||||
mut bytes_read := 0
|
||||
mut remaining_bytes := bytes_needed
|
||||
|
||||
@@ -14,8 +14,8 @@ const (
|
||||
)
|
||||
|
||||
// read returns an array of `bytes_needed` random bytes read from the OS.
|
||||
pub fn read(bytes_needed int) ?[]byte {
|
||||
mut buffer := []byte{len: bytes_needed}
|
||||
pub fn read(bytes_needed int) ?[]u8 {
|
||||
mut buffer := []u8{len: bytes_needed}
|
||||
// use bcrypt_use_system_preferred_rng because we passed null as algo
|
||||
status := C.BCryptGenRandom(0, buffer.data, bytes_needed, rand.bcrypt_use_system_preferred_rng)
|
||||
if status != rand.status_success {
|
||||
|
||||
@@ -35,7 +35,7 @@ pub fn int_u64(max u64) ?u64 {
|
||||
return n
|
||||
}
|
||||
|
||||
fn bytes_to_u64(b []byte) []u64 {
|
||||
fn bytes_to_u64(b []u8) []u64 {
|
||||
ws := 64 / 8
|
||||
mut z := []u64{len: ((b.len + ws - 1) / ws)}
|
||||
mut i := b.len
|
||||
|
||||
@@ -22,7 +22,7 @@ mut:
|
||||
|
||||
// new_cipher creates and returns a new Cipher. The key argument should be the
|
||||
// RC4 key, at least 1 byte and at most 256 bytes.
|
||||
pub fn new_cipher(key []byte) ?Cipher {
|
||||
pub fn new_cipher(key []u8) ?Cipher {
|
||||
if key.len < 1 || key.len > 256 {
|
||||
return error('crypto.rc4: invalid key size ' + key.len.str())
|
||||
}
|
||||
@@ -56,7 +56,7 @@ pub fn (mut c Cipher) reset() {
|
||||
|
||||
// xor_key_stream sets dst to the result of XORing src with the key stream.
|
||||
// Dst and src must overlap entirely or not at all.
|
||||
pub fn (mut c Cipher) xor_key_stream(mut dst []byte, mut src []byte) {
|
||||
pub fn (mut c Cipher) xor_key_stream(mut dst []u8, mut src []u8) {
|
||||
if src.len == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
@@ -30,13 +30,13 @@ const (
|
||||
struct Digest {
|
||||
mut:
|
||||
h []u32
|
||||
x []byte
|
||||
x []u8
|
||||
nx int
|
||||
len u64
|
||||
}
|
||||
|
||||
fn (mut d Digest) reset() {
|
||||
d.x = []byte{len: sha1.chunk}
|
||||
d.x = []u8{len: sha1.chunk}
|
||||
d.h = []u32{len: (5)}
|
||||
d.h[0] = u32(sha1.init0)
|
||||
d.h[1] = u32(sha1.init1)
|
||||
@@ -56,7 +56,7 @@ pub fn new() &Digest {
|
||||
|
||||
// write writes the contents of `p_` to the internal hash representation.
|
||||
[manualfree]
|
||||
pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
pub fn (mut d Digest) write(p_ []u8) ?int {
|
||||
nn := p_.len
|
||||
unsafe {
|
||||
mut p := p_
|
||||
@@ -91,7 +91,7 @@ pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
}
|
||||
|
||||
// sum returns a copy of the generated sum of the bytes in `b_in`.
|
||||
pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
pub fn (d &Digest) sum(b_in []u8) []u8 {
|
||||
// Make a copy of d so that caller can keep writing and summing.
|
||||
mut d0 := *d
|
||||
hash := d0.checksum()
|
||||
@@ -103,10 +103,10 @@ pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
}
|
||||
|
||||
// checksum returns the current byte checksum of the `Digest`.
|
||||
pub fn (mut d Digest) checksum() []byte {
|
||||
pub fn (mut d Digest) checksum() []u8 {
|
||||
mut len := d.len
|
||||
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
|
||||
mut tmp := []byte{len: (64)}
|
||||
mut tmp := []u8{len: (64)}
|
||||
tmp[0] = 0x80
|
||||
if int(len) % 64 < 56 {
|
||||
d.write(tmp[..56 - int(len) % 64]) or { panic(err) }
|
||||
@@ -117,7 +117,7 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
len <<= 3
|
||||
binary.big_endian_put_u64(mut tmp, len)
|
||||
d.write(tmp[..8]) or { panic(err) }
|
||||
mut digest := []byte{len: sha1.size}
|
||||
mut digest := []u8{len: sha1.size}
|
||||
binary.big_endian_put_u32(mut digest, d.h[0])
|
||||
binary.big_endian_put_u32(mut digest[4..], d.h[1])
|
||||
binary.big_endian_put_u32(mut digest[8..], d.h[2])
|
||||
@@ -127,13 +127,13 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
}
|
||||
|
||||
// sum returns the SHA-1 checksum of the bytes passed in `data`.
|
||||
pub fn sum(data []byte) []byte {
|
||||
pub fn sum(data []u8) []u8 {
|
||||
mut d := new()
|
||||
d.write(data) or { panic(err) }
|
||||
return d.checksum()
|
||||
}
|
||||
|
||||
fn block(mut dig Digest, p []byte) {
|
||||
fn block(mut dig Digest, p []u8) {
|
||||
// For now just use block_generic until we have specific
|
||||
// architecture optimized versions
|
||||
block_generic(mut dig, p)
|
||||
|
||||
@@ -15,7 +15,7 @@ const (
|
||||
_k3 = 0xCA62C1D6
|
||||
)
|
||||
|
||||
fn block_generic(mut dig Digest, p_ []byte) {
|
||||
fn block_generic(mut dig Digest, p_ []u8) {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
mut w := []u32{len: (16)}
|
||||
|
||||
@@ -42,7 +42,7 @@ const (
|
||||
struct Digest {
|
||||
mut:
|
||||
h []u32
|
||||
x []byte
|
||||
x []u8
|
||||
nx int
|
||||
len u64
|
||||
is224 bool // mark if this digest is SHA-224
|
||||
@@ -50,7 +50,7 @@ mut:
|
||||
|
||||
fn (mut d Digest) reset() {
|
||||
d.h = []u32{len: (8)}
|
||||
d.x = []byte{len: sha256.chunk}
|
||||
d.x = []u8{len: sha256.chunk}
|
||||
if !d.is224 {
|
||||
d.h[0] = u32(sha256.init0)
|
||||
d.h[1] = u32(sha256.init1)
|
||||
@@ -90,7 +90,7 @@ pub fn new224() &Digest {
|
||||
}
|
||||
|
||||
// write writes the contents of `p_` to the internal hash representation.
|
||||
pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
pub fn (mut d Digest) write(p_ []u8) ?int {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
nn := p.len
|
||||
@@ -125,7 +125,7 @@ pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
}
|
||||
|
||||
// sum returns the SHA256 or SHA224 checksum of digest with the data.
|
||||
pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
pub fn (d &Digest) sum(b_in []u8) []u8 {
|
||||
// Make a copy of d so that caller can keep writing and summing.
|
||||
mut d0 := *d
|
||||
hash := d0.checksum()
|
||||
@@ -143,10 +143,10 @@ pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
}
|
||||
|
||||
// checksum returns the current byte checksum of the Digest.
|
||||
pub fn (mut d Digest) checksum() []byte {
|
||||
pub fn (mut d Digest) checksum() []u8 {
|
||||
mut len := d.len
|
||||
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
|
||||
mut tmp := []byte{len: (64)}
|
||||
mut tmp := []u8{len: (64)}
|
||||
tmp[0] = 0x80
|
||||
if int(len) % 64 < 56 {
|
||||
d.write(tmp[..56 - int(len) % 64]) or { panic(err) }
|
||||
@@ -160,7 +160,7 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
if d.nx != 0 {
|
||||
panic('d.nx != 0')
|
||||
}
|
||||
mut digest := []byte{len: sha256.size}
|
||||
mut digest := []u8{len: sha256.size}
|
||||
binary.big_endian_put_u32(mut digest, d.h[0])
|
||||
binary.big_endian_put_u32(mut digest[4..], d.h[1])
|
||||
binary.big_endian_put_u32(mut digest[8..], d.h[2])
|
||||
@@ -176,28 +176,28 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
|
||||
// sum returns the SHA256 checksum of the bytes in `data`.
|
||||
// Example: assert sha256.sum('V'.bytes()).len > 0 == true
|
||||
pub fn sum(data []byte) []byte {
|
||||
pub fn sum(data []u8) []u8 {
|
||||
return sum256(data)
|
||||
}
|
||||
|
||||
// sum256 returns the SHA256 checksum of the data.
|
||||
pub fn sum256(data []byte) []byte {
|
||||
pub fn sum256(data []u8) []u8 {
|
||||
mut d := new()
|
||||
d.write(data) or { panic(err) }
|
||||
return d.checksum()
|
||||
}
|
||||
|
||||
// sum224 returns the SHA224 checksum of the data.
|
||||
pub fn sum224(data []byte) []byte {
|
||||
pub fn sum224(data []u8) []u8 {
|
||||
mut d := new224()
|
||||
d.write(data) or { panic(err) }
|
||||
sum := d.checksum()
|
||||
mut sum224 := []byte{len: sha256.size224}
|
||||
mut sum224 := []u8{len: sha256.size224}
|
||||
copy(mut sum224, sum[..sha256.size224])
|
||||
return sum224
|
||||
}
|
||||
|
||||
fn block(mut dig Digest, p []byte) {
|
||||
fn block(mut dig Digest, p []u8) {
|
||||
// For now just use block_generic until we have specific
|
||||
// architecture optimized versions
|
||||
block_generic(mut dig, p)
|
||||
|
||||
@@ -78,7 +78,7 @@ const (
|
||||
]
|
||||
)
|
||||
|
||||
fn block_generic(mut dig Digest, p_ []byte) {
|
||||
fn block_generic(mut dig Digest, p_ []u8) {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
mut w := []u32{len: (64)}
|
||||
|
||||
@@ -64,7 +64,7 @@ const (
|
||||
struct Digest {
|
||||
mut:
|
||||
h []u64
|
||||
x []byte
|
||||
x []u8
|
||||
nx int
|
||||
len u64
|
||||
function crypto.Hash
|
||||
@@ -72,7 +72,7 @@ mut:
|
||||
|
||||
fn (mut d Digest) reset() {
|
||||
d.h = []u64{len: (8)}
|
||||
d.x = []byte{len: sha512.chunk}
|
||||
d.x = []u8{len: sha512.chunk}
|
||||
match d.function {
|
||||
.sha384 {
|
||||
d.h[0] = sha512.init0_384
|
||||
@@ -149,7 +149,7 @@ fn new384() &Digest {
|
||||
}
|
||||
|
||||
// write writes the contents of `p_` to the internal hash representation.
|
||||
pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
pub fn (mut d Digest) write(p_ []u8) ?int {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
nn := p.len
|
||||
@@ -184,7 +184,7 @@ pub fn (mut d Digest) write(p_ []byte) ?int {
|
||||
}
|
||||
|
||||
// sum returns the SHA512 or SHA384 checksum of digest with the data bytes in `b_in`
|
||||
pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
pub fn (d &Digest) sum(b_in []u8) []u8 {
|
||||
// Make a copy of d so that caller can keep writing and summing.
|
||||
mut d0 := *d
|
||||
hash := d0.checksum()
|
||||
@@ -215,10 +215,10 @@ pub fn (d &Digest) sum(b_in []byte) []byte {
|
||||
}
|
||||
|
||||
// checksum returns the current byte checksum of the Digest.
|
||||
pub fn (mut d Digest) checksum() []byte {
|
||||
pub fn (mut d Digest) checksum() []u8 {
|
||||
// Padding. Add a 1 bit and 0 bits until 112 bytes mod 128.
|
||||
mut len := d.len
|
||||
mut tmp := []byte{len: (128)}
|
||||
mut tmp := []u8{len: (128)}
|
||||
tmp[0] = 0x80
|
||||
if int(len) % 128 < 112 {
|
||||
d.write(tmp[..112 - int(len) % 128]) or { panic(err) }
|
||||
@@ -233,7 +233,7 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
if d.nx != 0 {
|
||||
panic('d.nx != 0')
|
||||
}
|
||||
mut digest := []byte{len: sha512.size}
|
||||
mut digest := []u8{len: sha512.size}
|
||||
binary.big_endian_put_u64(mut digest, d.h[0])
|
||||
binary.big_endian_put_u64(mut digest[8..], d.h[1])
|
||||
binary.big_endian_put_u64(mut digest[16..], d.h[2])
|
||||
@@ -248,43 +248,43 @@ pub fn (mut d Digest) checksum() []byte {
|
||||
}
|
||||
|
||||
// sum512 returns the SHA512 checksum of the data.
|
||||
pub fn sum512(data []byte) []byte {
|
||||
pub fn sum512(data []u8) []u8 {
|
||||
mut d := new_digest(.sha512)
|
||||
d.write(data) or { panic(err) }
|
||||
return d.checksum()
|
||||
}
|
||||
|
||||
// sum384 returns the SHA384 checksum of the data.
|
||||
pub fn sum384(data []byte) []byte {
|
||||
pub fn sum384(data []u8) []u8 {
|
||||
mut d := new_digest(.sha384)
|
||||
d.write(data) or { panic(err) }
|
||||
sum := d.checksum()
|
||||
mut sum384 := []byte{len: sha512.size384}
|
||||
mut sum384 := []u8{len: sha512.size384}
|
||||
copy(mut sum384, sum[..sha512.size384])
|
||||
return sum384
|
||||
}
|
||||
|
||||
// sum512_224 returns the Sum512/224 checksum of the data.
|
||||
pub fn sum512_224(data []byte) []byte {
|
||||
pub fn sum512_224(data []u8) []u8 {
|
||||
mut d := new_digest(.sha512_224)
|
||||
d.write(data) or { panic(err) }
|
||||
sum := d.checksum()
|
||||
mut sum224 := []byte{len: sha512.size224}
|
||||
mut sum224 := []u8{len: sha512.size224}
|
||||
copy(mut sum224, sum[..sha512.size224])
|
||||
return sum224
|
||||
}
|
||||
|
||||
// sum512_256 returns the Sum512/256 checksum of the data.
|
||||
pub fn sum512_256(data []byte) []byte {
|
||||
pub fn sum512_256(data []u8) []u8 {
|
||||
mut d := new_digest(.sha512_256)
|
||||
d.write(data) or { panic(err) }
|
||||
sum := d.checksum()
|
||||
mut sum256 := []byte{len: sha512.size256}
|
||||
mut sum256 := []u8{len: sha512.size256}
|
||||
copy(mut sum256, sum[..sha512.size256])
|
||||
return sum256
|
||||
}
|
||||
|
||||
fn block(mut dig Digest, p []byte) {
|
||||
fn block(mut dig Digest, p []u8) {
|
||||
// For now just use block_generic until we have specific
|
||||
// architecture optimized versions
|
||||
block_generic(mut dig, p)
|
||||
|
||||
@@ -32,7 +32,7 @@ const (
|
||||
u64(0x4cc5d4becb3e42b6), u64(0x597f299cfc657e2a), u64(0x5fcb6fab3ad6faec), u64(0x6c44198c4a475817)]
|
||||
)
|
||||
|
||||
fn block_generic(mut dig Digest, p_ []byte) {
|
||||
fn block_generic(mut dig Digest, p_ []u8) {
|
||||
unsafe {
|
||||
mut p := p_
|
||||
mut w := []u64{len: (80)}
|
||||
|
||||
Reference in New Issue
Block a user