1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

crypto.md5: improve performance of md5.blockblock_generic

This commit is contained in:
Delyan Angelov 2022-05-30 21:56:39 +03:00
parent 0f3b2c2ae7
commit fc64f09f0b
No known key found for this signature in database
GPG Key ID: 66886C0F12D595ED
3 changed files with 50 additions and 43 deletions

View File

@ -9,8 +9,14 @@
module md5 module md5
import math.bits import math.bits
import encoding.binary
[direct_array_access; inline]
fn get_le_u32(b []u8, start int) u32 {
return u32(b[start]) | (u32(b[1 + start]) << u32(8)) | (u32(b[2 + start]) << u32(16)) | (u32(b[
3 + start]) << u32(24))
}
[direct_array_access]
fn block_generic(mut dig Digest, p []u8) { fn block_generic(mut dig Digest, p []u8) {
// load state // load state
mut a := dig.s[0] mut a := dig.s[0]
@ -19,8 +25,6 @@ fn block_generic(mut dig Digest, p []u8) {
mut d := dig.s[3] mut d := dig.s[3]
for i := 0; i <= p.len - block_size; i += block_size { for i := 0; i <= p.len - block_size; i += block_size {
mut q := p[i..]
q = q[..block_size]
// save current state // save current state
aa := a aa := a
bb := b bb := b
@ -28,22 +32,22 @@ fn block_generic(mut dig Digest, p []u8) {
dd := d dd := d
// load input block // load input block
x0 := binary.little_endian_u32(q[4 * 0x0..]) x0 := get_le_u32(p, 4 * 0x0 + i)
x1 := binary.little_endian_u32(q[4 * 0x1..]) x1 := get_le_u32(p, 4 * 0x1 + i)
x2 := binary.little_endian_u32(q[4 * 0x2..]) x2 := get_le_u32(p, 4 * 0x2 + i)
x3 := binary.little_endian_u32(q[4 * 0x3..]) x3 := get_le_u32(p, 4 * 0x3 + i)
x4 := binary.little_endian_u32(q[4 * 0x4..]) x4 := get_le_u32(p, 4 * 0x4 + i)
x5 := binary.little_endian_u32(q[4 * 0x5..]) x5 := get_le_u32(p, 4 * 0x5 + i)
x6 := binary.little_endian_u32(q[4 * 0x6..]) x6 := get_le_u32(p, 4 * 0x6 + i)
x7 := binary.little_endian_u32(q[4 * 0x7..]) x7 := get_le_u32(p, 4 * 0x7 + i)
x8 := binary.little_endian_u32(q[4 * 0x8..]) x8 := get_le_u32(p, 4 * 0x8 + i)
x9 := binary.little_endian_u32(q[4 * 0x9..]) x9 := get_le_u32(p, 4 * 0x9 + i)
xa := binary.little_endian_u32(q[4 * 0xa..]) xa := get_le_u32(p, 4 * 0xa + i)
xb := binary.little_endian_u32(q[4 * 0xb..]) xb := get_le_u32(p, 4 * 0xb + i)
xc := binary.little_endian_u32(q[4 * 0xc..]) xc := get_le_u32(p, 4 * 0xc + i)
xd := binary.little_endian_u32(q[4 * 0xd..]) xd := get_le_u32(p, 4 * 0xd + i)
xe := binary.little_endian_u32(q[4 * 0xe..]) xe := get_le_u32(p, 4 * 0xe + i)
xf := binary.little_endian_u32(q[4 * 0xf..]) xf := get_le_u32(p, 4 * 0xf + i)
// round 1 // round 1
a = b + bits.rotate_left_32((((c ^ d) & b) ^ d) + a + x0 + u32(0xd76aa478), 7) a = b + bits.rotate_left_32((((c ^ d) & b) ^ d) + a + x0 + u32(0xd76aa478), 7)

View File

@ -4,26 +4,26 @@
module binary module binary
// Little Endian // Little Endian
[inline] [direct_array_access; inline]
pub fn little_endian_u16(b []u8) u16 { pub fn little_endian_u16(b []u8) u16 {
_ = b[1] // bounds check _ = b[1] // bounds check
return u16(b[0]) | (u16(b[1]) << u16(8)) return u16(b[0]) | (u16(b[1]) << u16(8))
} }
[inline] [direct_array_access; inline]
pub fn little_endian_put_u16(mut b []u8, v u16) { pub fn little_endian_put_u16(mut b []u8, v u16) {
_ = b[1] // bounds check _ = b[1] // bounds check
b[0] = u8(v) b[0] = u8(v)
b[1] = u8(v >> u16(8)) b[1] = u8(v >> u16(8))
} }
[inline] [direct_array_access; inline]
pub fn little_endian_u32(b []u8) u32 { pub fn little_endian_u32(b []u8) u32 {
_ = b[3] // bounds check _ = b[3] // bounds check
return u32(b[0]) | (u32(b[1]) << u32(8)) | (u32(b[2]) << u32(16)) | (u32(b[3]) << u32(24)) return u32(b[0]) | (u32(b[1]) << u32(8)) | (u32(b[2]) << u32(16)) | (u32(b[3]) << u32(24))
} }
[inline] [direct_array_access; inline]
pub fn little_endian_put_u32(mut b []u8, v u32) { pub fn little_endian_put_u32(mut b []u8, v u32) {
_ = b[3] // bounds check _ = b[3] // bounds check
b[0] = u8(v) b[0] = u8(v)
@ -32,13 +32,13 @@ pub fn little_endian_put_u32(mut b []u8, v u32) {
b[3] = u8(v >> u32(24)) b[3] = u8(v >> u32(24))
} }
[inline] [direct_array_access; inline]
pub fn little_endian_u64(b []u8) u64 { pub fn little_endian_u64(b []u8) u64 {
_ = b[7] // bounds check _ = b[7] // bounds check
return u64(b[0]) | (u64(b[1]) << u64(8)) | (u64(b[2]) << u64(16)) | (u64(b[3]) << u64(24)) | (u64(b[4]) << u64(32)) | (u64(b[5]) << u64(40)) | (u64(b[6]) << u64(48)) | (u64(b[7]) << u64(56)) return u64(b[0]) | (u64(b[1]) << u64(8)) | (u64(b[2]) << u64(16)) | (u64(b[3]) << u64(24)) | (u64(b[4]) << u64(32)) | (u64(b[5]) << u64(40)) | (u64(b[6]) << u64(48)) | (u64(b[7]) << u64(56))
} }
[inline] [direct_array_access; inline]
pub fn little_endian_put_u64(mut b []u8, v u64) { pub fn little_endian_put_u64(mut b []u8, v u64) {
_ = b[7] // bounds check _ = b[7] // bounds check
b[0] = u8(v) b[0] = u8(v)
@ -52,26 +52,26 @@ pub fn little_endian_put_u64(mut b []u8, v u64) {
} }
// Big Endian // Big Endian
[inline] [direct_array_access; inline]
pub fn big_endian_u16(b []u8) u16 { pub fn big_endian_u16(b []u8) u16 {
_ = b[1] // bounds check _ = b[1] // bounds check
return u16(b[1]) | (u16(b[0]) << u16(8)) return u16(b[1]) | (u16(b[0]) << u16(8))
} }
[inline] [direct_array_access; inline]
pub fn big_endian_put_u16(mut b []u8, v u16) { pub fn big_endian_put_u16(mut b []u8, v u16) {
_ = b[1] // bounds check _ = b[1] // bounds check
b[0] = u8(v >> u16(8)) b[0] = u8(v >> u16(8))
b[1] = u8(v) b[1] = u8(v)
} }
[inline] [direct_array_access; inline]
pub fn big_endian_u32(b []u8) u32 { pub fn big_endian_u32(b []u8) u32 {
_ = b[3] // bounds check _ = b[3] // bounds check
return u32(b[3]) | (u32(b[2]) << u32(8)) | (u32(b[1]) << u32(16)) | (u32(b[0]) << u32(24)) return u32(b[3]) | (u32(b[2]) << u32(8)) | (u32(b[1]) << u32(16)) | (u32(b[0]) << u32(24))
} }
[inline] [direct_array_access; inline]
pub fn big_endian_put_u32(mut b []u8, v u32) { pub fn big_endian_put_u32(mut b []u8, v u32) {
_ = b[3] // bounds check _ = b[3] // bounds check
b[0] = u8(v >> u32(24)) b[0] = u8(v >> u32(24))
@ -80,13 +80,13 @@ pub fn big_endian_put_u32(mut b []u8, v u32) {
b[3] = u8(v) b[3] = u8(v)
} }
[inline] [direct_array_access; inline]
pub fn big_endian_u64(b []u8) u64 { pub fn big_endian_u64(b []u8) u64 {
_ = b[7] // bounds check _ = b[7] // bounds check
return u64(b[7]) | (u64(b[6]) << u64(8)) | (u64(b[5]) << u64(16)) | (u64(b[4]) << u64(24)) | (u64(b[3]) << u64(32)) | (u64(b[2]) << u64(40)) | (u64(b[1]) << u64(48)) | (u64(b[0]) << u64(56)) return u64(b[7]) | (u64(b[6]) << u64(8)) | (u64(b[5]) << u64(16)) | (u64(b[4]) << u64(24)) | (u64(b[3]) << u64(32)) | (u64(b[2]) << u64(40)) | (u64(b[1]) << u64(48)) | (u64(b[0]) << u64(56))
} }
[inline] [direct_array_access; inline]
pub fn big_endian_put_u64(mut b []u8, v u64) { pub fn big_endian_put_u64(mut b []u8, v u64) {
_ = b[7] // bounds check _ = b[7] // bounds check
b[0] = u8(v >> u64(56)) b[0] = u8(v >> u64(56))

View File

@ -139,6 +139,13 @@ pub fn ones_count_64(x u64) int {
return int(y) & ((1 << 7) - 1) return int(y) & ((1 << 7) - 1)
} }
const (
n8 = u8(8)
n16 = u16(16)
n32 = u32(32)
n64 = u64(64)
)
// --- RotateLeft --- // --- RotateLeft ---
// rotate_left_8 returns the value of x rotated left by (k mod 8) bits. // rotate_left_8 returns the value of x rotated left by (k mod 8) bits.
// To rotate x right by k bits, call rotate_left_8(x, -k). // To rotate x right by k bits, call rotate_left_8(x, -k).
@ -146,9 +153,8 @@ pub fn ones_count_64(x u64) int {
// This function's execution time does not depend on the inputs. // This function's execution time does not depend on the inputs.
[inline] [inline]
pub fn rotate_left_8(x u8, k int) u8 { pub fn rotate_left_8(x u8, k int) u8 {
n := u8(8) s := u8(k) & (bits.n8 - u8(1))
s := u8(k) & (n - u8(1)) return (x << s) | (x >> (bits.n8 - s))
return (x << s) | (x >> (n - s))
} }
// rotate_left_16 returns the value of x rotated left by (k mod 16) bits. // rotate_left_16 returns the value of x rotated left by (k mod 16) bits.
@ -157,9 +163,8 @@ pub fn rotate_left_8(x u8, k int) u8 {
// This function's execution time does not depend on the inputs. // This function's execution time does not depend on the inputs.
[inline] [inline]
pub fn rotate_left_16(x u16, k int) u16 { pub fn rotate_left_16(x u16, k int) u16 {
n := u16(16) s := u16(k) & (bits.n16 - u16(1))
s := u16(k) & (n - u16(1)) return (x << s) | (x >> (bits.n16 - s))
return (x << s) | (x >> (n - s))
} }
// rotate_left_32 returns the value of x rotated left by (k mod 32) bits. // rotate_left_32 returns the value of x rotated left by (k mod 32) bits.
@ -168,9 +173,8 @@ pub fn rotate_left_16(x u16, k int) u16 {
// This function's execution time does not depend on the inputs. // This function's execution time does not depend on the inputs.
[inline] [inline]
pub fn rotate_left_32(x u32, k int) u32 { pub fn rotate_left_32(x u32, k int) u32 {
n := u32(32) s := u32(k) & (bits.n32 - u32(1))
s := u32(k) & (n - u32(1)) return (x << s) | (x >> (bits.n32 - s))
return (x << s) | (x >> (n - s))
} }
// rotate_left_64 returns the value of x rotated left by (k mod 64) bits. // rotate_left_64 returns the value of x rotated left by (k mod 64) bits.
@ -179,9 +183,8 @@ pub fn rotate_left_32(x u32, k int) u32 {
// This function's execution time does not depend on the inputs. // This function's execution time does not depend on the inputs.
[inline] [inline]
pub fn rotate_left_64(x u64, k int) u64 { pub fn rotate_left_64(x u64, k int) u64 {
n := u64(64) s := u64(k) & (bits.n64 - u64(1))
s := u64(k) & (n - u64(1)) return (x << s) | (x >> (bits.n64 - s))
return (x << s) | (x >> (n - s))
} }
// --- Reverse --- // --- Reverse ---