// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module rand import math.bits // Implementation note: // ==================== // C.rand() is okay to use within its defined range of C.RAND_MAX. // (See: https://web.archive.org/web/20180801210127/http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx) // The problem is, this value varies with the libc implementation. On windows, // for example, RAND_MAX is usually a measly 32767, whereas on (newer) linux it's generaly // 2147483647. The repetition period also varies wildly. In order to provide more entropy // without altering the underlying algorithm too much, this implementation simply // requests for more random bits until the necessary width for the integers is achieved. const ( rand_limit = u64(C.RAND_MAX) rand_bitsize = bits.len_64(rand_limit) u32_iter_count = calculate_iterations_for(32) u64_iter_count = calculate_iterations_for(64) ) fn calculate_iterations_for(bits int) int { base := bits / rand_bitsize extra := if bits % rand_bitsize == 0 { 0 } else { 1 } return base + extra } // Size constants to avoid importing the entire math module const ( max_u32 = 0xFFFFFFFF max_u64 = 0xFFFFFFFFFFFFFFFF max_u32_as_f32 = f32(max_u32) max_u64_as_f64 = f64(max_u64) ) // Masks for fast modular division const ( u31_mask = u32(0x7FFFFFFF) u63_mask = u64(0x7FFFFFFFFFFFFFFF) ) // C.rand returns a pseudorandom integer from 0 (inclusive) to C.RAND_MAX (exclusive) fn C.rand() int // C.srand seeds the internal PRNG with the given int seed. // fn C.srand(seed int) // SysRNG is the PRNG provided by default in the libc implementiation that V uses. pub struct SysRNG { mut: seed u32 = time_seed_32() } // r.seed() sets the seed of the accepting SysRNG to the given data. pub fn (mut r SysRNG) seed(seed_data []u32) { if seed_data.len != 1 { eprintln('SysRNG needs one 32-bit unsigned integer as the seed.') exit(1) } r.seed = seed_data[0] C.srand(int(r.seed)) } // r.default_rand() exposes the default behavior of the system's RNG // (equivalent to calling C.rand()). Recommended for testing/comparison // b/w V and other languages using libc and not for regular use. // This is also a one-off feature of SysRNG, similar to the global seed // situation. Other generators will not have this. [inline] pub fn (r SysRNG) default_rand() int { return C.rand() } // r.u32() returns a pseudorandom u32 value less than 2^32 [inline] pub fn (r SysRNG) u32() u32 { mut result := u32(C.rand()) for i in 1 .. u32_iter_count { result = result ^ (u32(C.rand()) << (rand_bitsize * i)) } return result } // r.u64() returns a pseudorandom u64 value less than 2^64 [inline] pub fn (r SysRNG) u64() u64 { mut result := u64(C.rand()) for i in 1 .. u64_iter_count { result = result ^ (u64(C.rand()) << (rand_bitsize * i)) } return result } // r.u32n(max) returns a pseudorandom u32 value that is guaranteed to be less than max [inline] pub fn (r SysRNG) u32n(max u32) u32 { if max == 0 { eprintln('max must be positive integer') exit(1) } // Owing to the pigeon-hole principle, we can't simply do // val := rng.u32() % max. // It'll wreck the properties of the distribution unless // max evenly divides 2^32. So we divide evenly to // the closest power of two. Then we loop until we find // an int in the required range bit_len := bits.len_32(max) if bit_len == 32 { for { value := r.u32() if value < max { return value } } } else { mask := (u32(1) << (bit_len + 1)) - 1 for { value := r.u32() & mask if value < max { return value } } } return u32(0) } // r.u64n(max) returns a pseudorandom u64 value that is guaranteed to be less than max [inline] pub fn (r SysRNG) u64n(max u64) u64 { if max == 0 { eprintln('max must be positive integer') exit(1) } // Similar procedure for u64s bit_len := bits.len_64(max) if bit_len == 64 { for { value := r.u64() if value < max { return value } } } else { mask := (u64(1) << (bit_len + 1)) - 1 for { value := r.u64() & mask if value < max { return value } } } return u64(0) } // r.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max) [inline] pub fn (r SysRNG) u32_in_range(min, max u32) u32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + r.u32n(max - min) } // r.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max) [inline] pub fn (r SysRNG) u64_in_range(min, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + r.u64n(max - min) } // r.int() returns a pseudorandom 32-bit int (which may be negative) [inline] pub fn (r SysRNG) int() int { return int(r.u32()) } // r.i64() returns a pseudorandom 64-bit i64 (which may be negative) [inline] pub fn (r SysRNG) i64() i64 { return i64(r.u64()) } // r.int31() returns a pseudorandom 31-bit int which is non-negative [inline] pub fn (r SysRNG) int31() int { return int(r.u32() & u31_mask) // Set the 32nd bit to 0. } // r.int63() returns a pseudorandom 63-bit int which is non-negative [inline] pub fn (r SysRNG) int63() i64 { return i64(r.u64() & u63_mask) // Set the 64th bit to 0. } // r.intn(max) returns a pseudorandom int that lies in [0, max) [inline] pub fn (r SysRNG) intn(max int) int { if max <= 0 { eprintln('max has to be positive.') exit(1) } return int(r.u32n(u32(max))) } // r.i64n(max) returns a pseudorandom i64 that lies in [0, max) [inline] pub fn (r SysRNG) i64n(max i64) i64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return i64(r.u64n(u64(max))) } // r.int_in_range(min, max) returns a pseudorandom int that lies in [min, max) [inline] pub fn (r SysRNG) int_in_range(min, max int) int { if max <= min { eprintln('max must be greater than min') exit(1) } // This supports negative ranges like [-10, -5) because the difference is positive return min + r.intn(max - min) } // r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) [inline] pub fn (r SysRNG) i64_in_range(min, max i64) i64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + r.i64n(max - min) } // r.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (r SysRNG) f32() f32 { return f32(r.u32()) / max_u32_as_f32 } // r.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (r SysRNG) f64() f64 { return f64(r.u64()) / max_u64_as_f64 } // r.f32n() returns a pseudorandom f32 value in [0, max) [inline] pub fn (r SysRNG) f32n(max f32) f32 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return r.f32() * max } // r.f64n() returns a pseudorandom f64 value in [0, max) [inline] pub fn (r SysRNG) f64n(max f64) f64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return r.f64() * max } // r.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max) [inline] pub fn (r SysRNG) f32_in_range(min, max f32) f32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + r.f32n(max - min) } // r.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) [inline] pub fn (r SysRNG) f64_in_range(min, max f64) f64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + r.f64n(max - min) }