module main import strings const ( dot_ptr = '->' ) // returns the type of the new variable fn (p mut Parser) gen_var_decl(name string, is_static bool) string { // Generate expression to tmp because we need its type first // `[typ] [name] = bool_expression();` pos := p.cgen.add_placeholder() mut typ := p.bool_expression() //p.gen('/*after expr*/') // Option check ? or { or_else := p.tok == .key_orelse tmp := p.get_tmp() if or_else { // Option_User tmp = get_user(1); // if (!tmp.ok) { or_statement } // User user = *(User*)tmp.data; // p.assigned_var = '' p.cgen.set_placeholder(pos, '$typ $tmp = ') p.genln(';') typ = typ.replace('Option_', '') p.next() p.check(.lcbr) p.genln('if (!$tmp .ok) {') p.register_var(Var { name: 'err' typ: 'string' is_mut: false is_used: true }) p.genln('string err = $tmp . error;') p.statements() p.genln('$typ $name = *($typ*) $tmp . data;') if !p.returns && p.prev_tok2 != .key_continue && p.prev_tok2 != .key_break { p.error('`or` block must return/continue/break/panic') } p.returns = false return typ } gen_name := p.table.var_cgen_name(name) mut nt_gen := p.table.cgen_name_type_pair(gen_name, typ) // `foo := C.Foo{}` => `Foo foo;` if !p.is_empty_c_struct_init && !typ.starts_with('['){ nt_gen += '=' } if is_static { nt_gen = 'static $nt_gen' } p.cgen.set_placeholder(pos, nt_gen) return typ } fn (p mut Parser) gen_fn_decl(f Fn, typ, str_args string) { dll_export_linkage := if p.os == .msvc && p.attr == 'live' && p.pref.is_so { '__declspec(dllexport) ' } else if p.attr == 'inline' { 'static inline ' } else { '' } fn_name_cgen := p.table.fn_gen_name(f) //str_args := f.str_args(p.table) p.genln('$dll_export_linkage$typ $fn_name_cgen($str_args) {') } fn types_to_c(types []Type, table &Table) string { mut sb := strings.new_builder(10) for t in types { if t.cat != .union_ && t.cat != .struct_ { continue } //if is_objc { //sb.writeln('@interface $name : $objc_parent { @public') //} //if is_atomic { //sb.write('_Atomic ') //} kind := if t.cat == .union_ {'union'} else {'struct'} sb.writeln('$kind $t.name {') for field in t.fields { sb.write('\t') sb.writeln(table.cgen_name_type_pair(field.name, field.typ) + ';') } sb.writeln('};\n') //if is_objc { //sb.writeln('@end') //} } return sb.str() } fn (p mut Parser) index_get(typ string, fn_ph int, cfg IndexCfg) { // Erase var name we generated earlier: "int a = m, 0" // "m, 0" gets killed since we need to start from scratch. It's messy. // "m, 0" is an index expression, save it before deleting and insert later in map_get() mut index_expr := '' if p.cgen.is_tmp { index_expr = p.cgen.tmp_line.right(fn_ph) p.cgen.resetln(p.cgen.tmp_line.left(fn_ph)) } else { index_expr = p.cgen.cur_line.right(fn_ph) p.cgen.resetln(p.cgen.cur_line.left(fn_ph)) } // Can't pass integer literal, because map_get() requires a void* tmp := p.get_tmp() tmp_ok := p.get_tmp() if cfg.is_map { p.gen('$tmp') def := type_default(typ) p.cgen.insert_before('$typ $tmp = $def; bool $tmp_ok = map_get($index_expr, & $tmp);') } else if cfg.is_arr { if p.pref.translated && !p.builtin_mod { p.gen('$index_expr ]') } else { if cfg.is_ptr { p.gen('( *($typ*) array__get(* $index_expr) )') } else { p.gen('( *($typ*) array__get($index_expr) )') } } } else if cfg.is_str && !p.builtin_mod { p.gen('string_at($index_expr)') } // Zero the string after map_get() if it's nil, numbers are automatically 0 // This is ugly, but what can I do without generics? // TODO what about user types? if cfg.is_map && typ == 'string' { // p.cgen.insert_before('if (!${tmp}.str) $tmp = tos("", 0);') p.cgen.insert_before('if (!$tmp_ok) $tmp = tos((byte *)"", 0);') } } fn (table mut Table) fn_gen_name(f &Fn) string { mut name := f.name if f.is_method { name = '${f.receiver_typ}_$f.name' name = name.replace(' ', '') name = name.replace('*', '') name = name.replace('+', 'plus') name = name.replace('-', 'minus') } // Avoid name conflicts (with things like abs(), print() etc). // Generate b_abs(), b_print() // TODO duplicate functionality if f.mod == 'builtin' && f.name in CReserved { return 'v_$name' } // Obfuscate but skip certain names // TODO ugly, fix if table.obfuscate && f.name != 'main' && f.name != 'WinMain' && f.mod != 'builtin' && !f.is_c && f.mod != 'darwin' && f.mod != 'os' && !f.name.contains('window_proc') && f.name != 'gg__vec2' && f.name != 'build_token_str' && f.name != 'build_keys' && f.mod != 'json' && !name.ends_with('_str') && !name.contains('contains') { mut idx := table.obf_ids[name] // No such function yet, register it if idx == 0 { table.fn_cnt++ table.obf_ids[name] = table.fn_cnt idx = table.fn_cnt } old := name name = 'f_$idx' println('$old ==> $name') } return name } fn (p mut Parser) gen_method_call(receiver_type, ftyp string, cgen_name string, receiver Var,method_ph int) { //mut cgen_name := p.table.fn_gen_name(f) mut method_call := cgen_name + '(' // if receiver is key_mut or a ref (&), generate & for the first arg if receiver.ref || (receiver.is_mut && !receiver_type.contains('*')) { method_call += '& /* ? */' } // generate deref (TODO copy pasta later in fn_call_args) if !receiver.is_mut && receiver_type.contains('*') { method_call += '*' } mut cast := '' // Method returns (void*) => cast it to int, string, user etc // number := *(int*)numbers.first() if ftyp == 'void*' { // array_int => int cast = receiver_type.all_after('_') cast = '*($cast*) ' } p.cgen.set_placeholder(method_ph, '$cast $method_call') //return method_call } fn (p mut Parser) gen_array_at(typ_ string, is_arr0 bool, fn_ph int) { mut typ := typ_ //p.fgen('[') // array_int a; a[0] // type is "array_int", need "int" // typ = typ.replace('array_', '') if is_arr0 { typ = typ.right(6) } // array a; a.first() voidptr // type is "array", need "void*" if typ == 'array' { typ = 'void*' } // No bounds check in translated from C code if p.pref.translated && !p.builtin_mod { // Cast void* to typ*: add (typ*) to the beginning of the assignment : // ((int*)a.data = ... p.cgen.set_placeholder(fn_ph, '(($typ*)(') p.gen('.data))[') } else { p.gen(',') } } fn (p mut Parser) gen_for_header(i, tmp, var_typ, val string) { p.genln('for (int $i = 0; $i < ${tmp}.len; $i++) {') p.genln('$var_typ $val = (($var_typ *) $tmp . data)[$i];') } fn (p mut Parser) gen_for_str_header(i, tmp, var_typ, val string) { p.genln('array_byte bytes_$tmp = string_bytes( $tmp );') p.genln(';\nfor (int $i = 0; $i < $tmp .len; $i ++) {') p.genln('$var_typ $val = (($var_typ *) bytes_$tmp . data)[$i];') } fn (p mut Parser) gen_for_map_header(i, tmp, var_typ, val, typ string) { def := type_default(typ) p.genln('array_string keys_$tmp = map_keys(& $tmp ); ') p.genln('for (int l = 0; l < keys_$tmp .len; l++) {') p.genln('string $i = ((string*)keys_$tmp .data)[l];') // TODO don't call map_get() for each key, fetch values while traversing // the tree (replace `map_keys()` above with `map_key_vals()`) p.genln('$var_typ $val = $def; map_get($tmp, $i, & $val);') } fn (p mut Parser) gen_array_init(typ string, no_alloc bool, new_arr_ph int, nr_elems int) { mut new_arr := 'new_array_from_c_array' if no_alloc { new_arr += '_no_alloc' } if nr_elems == 0 && p.pref.ccompiler != 'tcc' { p.gen(' 0 })') } else { p.gen(' })') } // Need to do this in the second pass, otherwise it goes to the very top of the out.c file if !p.first_pass() { // Due to a tcc bug, the length needs to be specified. // GCC crashes if it is. cast := if p.pref.ccompiler == 'tcc' { '($typ[$nr_elems])' } else { '($typ[])' } p.cgen.set_placeholder(new_arr_ph, '$new_arr($nr_elems, $nr_elems, sizeof($typ), $cast { ') } } fn (p mut Parser) gen_array_set(typ string, is_ptr, is_map bool,fn_ph, assign_pos int, is_cao bool) { // `a[0] = 7` // curline right now: `a , 0 = 7` mut val := p.cgen.cur_line.right(assign_pos) p.cgen.resetln(p.cgen.cur_line.left(assign_pos)) mut cao_tmp := p.cgen.cur_line mut func := '' if is_map { func = 'map__set(&' // CAO on map is a bit more complicated as it loads // the value inside a pointer instead of returning it. } else { if is_ptr { func = 'array_set(' if is_cao { cao_tmp = '*($p.expected_type *) array__get(*$cao_tmp)' } } else { func = 'array_set(&/*q*/' if is_cao { cao_tmp = '*($p.expected_type *) array__get($cao_tmp)' } } } p.cgen.set_placeholder(fn_ph, func) if is_cao { val = cao_tmp + val.all_before('=') + val.all_after('=') } p.gen(', & ($typ []) { $val })') } // returns true in case of an early return fn (p mut Parser) gen_struct_init(typ string, t Type) bool { // TODO hack. If it's a C type, we may need to add "struct" before declaration: // a := &C.A{} ==> struct A* a = malloc(sizeof(struct A)); if p.is_c_struct_init { if t.cat != .c_typedef { p.cgen.insert_before('struct /*c struct init*/') } } // TODO tm struct struct bug if typ == 'tm' { p.cgen.lines[p.cgen.lines.len-1] = '' } p.next() p.check(.lcbr) ptr := typ.contains('*') // `user := User{foo:bar}` => `User user = (User){ .foo = bar}` if !ptr { if p.is_c_struct_init { // `face := C.FT_Face{}` => `FT_Face face;` if p.tok == .rcbr { p.is_empty_c_struct_init = true p.check(.rcbr) return true } p.gen('(struct $typ) {') p.is_c_struct_init = false } else { p.gen('($typ) {') } } else { // TODO tmp hack for 0 pointers init // &User{!} ==> 0 if p.tok == .not { p.next() p.gen('0') p.check(.rcbr) return true } p.gen('($t.name*)memdup(&($t.name) {') } return false } fn (p mut Parser) gen_struct_field_init(field string) { p.gen('.$field = ') } fn (p mut Parser) gen_empty_map(typ string) { p.gen('new_map(1, sizeof($typ))') } fn (p mut Parser) cast(typ string) { p.next() pos := p.cgen.add_placeholder() if p.tok == .rpar { // skip `)` if it's `(*int)(ptr)`, not `int(a)` p.ptr_cast = true p.next() } p.check(.lpar) p.expected_type = typ expr_typ := p.bool_expression() // `face := FT_Face(cobj)` => `FT_Face face = *((FT_Face*)cobj);` casting_voidptr_to_value := expr_typ == 'void*' && typ != 'int' && typ != 'byteptr' && !typ.ends_with('*') p.expected_type = '' // `string(buffer)` => `tos2(buffer)` // `string(buffer, len)` => `tos(buffer, len)` // `string(bytes_array, len)` => `tos(bytes_array.data, len)` is_byteptr := expr_typ == 'byte*' || expr_typ == 'byteptr' is_bytearr := expr_typ == 'array_byte' if typ == 'string' { if is_byteptr || is_bytearr { if p.tok == .comma { p.check(.comma) p.cgen.set_placeholder(pos, 'tos((byte *)') if is_bytearr { p.gen('.data') } p.gen(', ') p.check_types(p.expression(), 'int') } else { if is_bytearr { p.gen('.data') } p.cgen.set_placeholder(pos, 'tos2((byte *)') } } // `string(234)` => error else if expr_typ == 'int' { p.error('cannot cast `$expr_typ` to `$typ`, use `str()` method instead') } else { p.error('cannot cast `$expr_typ` to `$typ`') } } else if typ == 'byte' && expr_typ == 'string' { p.error('cannot cast `$expr_typ` to `$typ`, use backquotes `` to create a `$typ` or access the value of an index of `$expr_typ` using []') } else if casting_voidptr_to_value { p.cgen.set_placeholder(pos, '*($typ*)(') } else { p.cgen.set_placeholder(pos, '($typ)(') } p.check(.rpar) p.gen(')') } fn type_default(typ string) string { if typ.starts_with('array_') { return 'new_array(0, 1, sizeof( ${typ.right(6)} ))' } // Always set pointers to 0 if typ.ends_with('*') { return '0' } // User struct defined in another module. if typ.contains('__') { return '{0}' } // Default values for other types are not needed because of mandatory initialization switch typ { case 'bool': return '0' case 'string': return 'tos((byte *)"", 0)' case 'i8': return '0' case 'i16': return '0' case 'i64': return '0' case 'u16': return '0' case 'u32': return '0' case 'u64': return '0' case 'byte': return '0' case 'int': return '0' case 'rune': return '0' case 'f32': return '0.0' case 'f64': return '0.0' case 'byteptr': return '0' case 'voidptr': return '0' } return '{0}' } fn (p mut Parser) gen_array_push(ph int, typ, expr_type, tmp, tmp_typ string) { push_array := typ == expr_type if push_array { p.cgen.set_placeholder(ph, '_PUSH_MANY(&' ) p.gen('), $tmp, $typ)') } else { p.check_types(expr_type, tmp_typ) // Pass tmp var info to the _PUSH macro // Prepend tmp initialisation and push call // Don't dereference if it's already a mutable array argument (`fn foo(mut []int)`) push_call := if typ.contains('*'){'_PUSH('} else { '_PUSH(&'} p.cgen.set_placeholder(ph, push_call) p.gen('), $tmp, $tmp_typ)') } }