// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. // This implementation is derived from the golang implementation // which itself is derived in part from the reference // ANSI C implementation, which carries the following notice: // // rijndael-alg-fst.c // // @version 3.0 (December 2000) // // Optimised ANSI C code for the Rijndael cipher (now AES) // // @author Vincent Rijmen // @author Antoon Bosselaers // @author Paulo Barreto // // This code is hereby placed in the public domain. // // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission // for implementation details. // https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf // https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf module aes import encoding.binary // Encrypt one block from src into dst, using the expanded key xk. fn encrypt_block_generic(xk []u32, mut dst []u8, src []u8) { _ = src[15] // early bounds check mut s0 := binary.big_endian_u32(src[..4]) mut s1 := binary.big_endian_u32(src[4..8]) mut s2 := binary.big_endian_u32(src[8..12]) mut s3 := binary.big_endian_u32(src[12..16]) // First round just XORs input with key. s0 ^= xk[0] s1 ^= xk[1] s2 ^= xk[2] s3 ^= xk[3] // Middle rounds shuffle using tables. // Number of rounds is set by length of expanded key. nr := xk.len / 4 - 2 // - 2: one above, one more below mut k := 4 mut t0 := u32(0) mut t1 := u32(0) mut t2 := u32(0) mut t3 := u32(0) for _ in 0 .. nr { t0 = xk[k + 0] ^ te0[u8(s0 >> 24)] ^ te1[u8(s1 >> 16)] ^ te2[u8(s2 >> 8)] ^ u32(te3[u8(s3)]) t1 = xk[k + 1] ^ te0[u8(s1 >> 24)] ^ te1[u8(s2 >> 16)] ^ te2[u8(s3 >> 8)] ^ u32(te3[u8(s0)]) t2 = xk[k + 2] ^ te0[u8(s2 >> 24)] ^ te1[u8(s3 >> 16)] ^ te2[u8(s0 >> 8)] ^ u32(te3[u8(s1)]) t3 = xk[k + 3] ^ te0[u8(s3 >> 24)] ^ te1[u8(s0 >> 16)] ^ te2[u8(s1 >> 8)] ^ u32(te3[u8(s2)]) k += 4 s0 = t0 s1 = t1 s2 = t2 s3 = t3 } // Last round uses s-box directly and XORs to produce output. s0 = u32(s_box0[t0 >> 24]) << 24 | u32(s_box0[t1 >> 16 & 0xff]) << 16 | u32(s_box0[t2 >> 8 & 0xff]) << 8 | u32(s_box0[t3 & u32(0xff)]) s1 = u32(s_box0[t1 >> 24]) << 24 | u32(s_box0[t2 >> 16 & 0xff]) << 16 | u32(s_box0[t3 >> 8 & 0xff]) << 8 | u32(s_box0[t0 & u32(0xff)]) s2 = u32(s_box0[t2 >> 24]) << 24 | u32(s_box0[t3 >> 16 & 0xff]) << 16 | u32(s_box0[t0 >> 8 & 0xff]) << 8 | u32(s_box0[t1 & u32(0xff)]) s3 = u32(s_box0[t3 >> 24]) << 24 | u32(s_box0[t0 >> 16 & 0xff]) << 16 | u32(s_box0[t1 >> 8 & 0xff]) << 8 | u32(s_box0[t2 & u32(0xff)]) s0 ^= xk[k + 0] s1 ^= xk[k + 1] s2 ^= xk[k + 2] s3 ^= xk[k + 3] _ := dst[15] // early bounds check binary.big_endian_put_u32(mut (*dst)[0..4], s0) binary.big_endian_put_u32(mut (*dst)[4..8], s1) binary.big_endian_put_u32(mut (*dst)[8..12], s2) binary.big_endian_put_u32(mut (*dst)[12..16], s3) } // Decrypt one block from src into dst, using the expanded key xk. fn decrypt_block_generic(xk []u32, mut dst []u8, src []u8) { _ = src[15] // early bounds check mut s0 := binary.big_endian_u32(src[0..4]) mut s1 := binary.big_endian_u32(src[4..8]) mut s2 := binary.big_endian_u32(src[8..12]) mut s3 := binary.big_endian_u32(src[12..16]) // First round just XORs input with key. s0 ^= xk[0] s1 ^= xk[1] s2 ^= xk[2] s3 ^= xk[3] // Middle rounds shuffle using tables. // Number of rounds is set by length of expanded key. nr := xk.len / 4 - 2 // - 2: one above, one more below mut k := 4 mut t0 := u32(0) mut t1 := u32(0) mut t2 := u32(0) mut t3 := u32(0) for _ in 0 .. nr { t0 = xk[k + 0] ^ td0[u8(s0 >> 24)] ^ td1[u8(s3 >> 16)] ^ td2[u8(s2 >> 8)] ^ u32(td3[u8(s1)]) t1 = xk[k + 1] ^ td0[u8(s1 >> 24)] ^ td1[u8(s0 >> 16)] ^ td2[u8(s3 >> 8)] ^ u32(td3[u8(s2)]) t2 = xk[k + 2] ^ td0[u8(s2 >> 24)] ^ td1[u8(s1 >> 16)] ^ td2[u8(s0 >> 8)] ^ u32(td3[u8(s3)]) t3 = xk[k + 3] ^ td0[u8(s3 >> 24)] ^ td1[u8(s2 >> 16)] ^ td2[u8(s1 >> 8)] ^ u32(td3[u8(s0)]) k += 4 s0 = t0 s1 = t1 s2 = t2 s3 = t3 } // Last round uses s-box directly and XORs to produce output. s0 = u32(s_box1[t0 >> 24]) << 24 | u32(s_box1[t3 >> 16 & 0xff]) << 16 | u32(s_box1[t2 >> 8 & 0xff]) << 8 | u32(s_box1[t1 & u32(0xff)]) s1 = u32(s_box1[t1 >> 24]) << 24 | u32(s_box1[t0 >> 16 & 0xff]) << 16 | u32(s_box1[t3 >> 8 & 0xff]) << 8 | u32(s_box1[t2 & u32(0xff)]) s2 = u32(s_box1[t2 >> 24]) << 24 | u32(s_box1[t1 >> 16 & 0xff]) << 16 | u32(s_box1[t0 >> 8 & 0xff]) << 8 | u32(s_box1[t3 & u32(0xff)]) s3 = u32(s_box1[t3 >> 24]) << 24 | u32(s_box1[t2 >> 16 & 0xff]) << 16 | u32(s_box1[t1 >> 8 & 0xff]) << 8 | u32(s_box1[t0 & u32(0xff)]) s0 ^= xk[k + 0] s1 ^= xk[k + 1] s2 ^= xk[k + 2] s3 ^= xk[k + 3] _ = dst[15] // early bounds check binary.big_endian_put_u32(mut (*dst)[..4], s0) binary.big_endian_put_u32(mut (*dst)[4..8], s1) binary.big_endian_put_u32(mut (*dst)[8..12], s2) binary.big_endian_put_u32(mut (*dst)[12..16], s3) } // Apply s_box0 to each byte in w. fn subw(w u32) u32 { return u32(s_box0[w >> 24]) << 24 | u32(s_box0[w >> 16 & 0xff]) << 16 | u32(s_box0[w >> 8 & 0xff]) << 8 | u32(s_box0[w & u32(0xff)]) } // Rotate fn rotw(w u32) u32 { return (w << 8) | (w >> 24) } // Key expansion algorithm. See FIPS-197, Figure 11. // Their rcon[i] is our powx[i-1] << 24. fn expand_key_generic(key []u8, mut enc []u32, mut dec []u32) { // Encryption key setup. mut i := 0 nk := key.len / 4 for i = 0; i < nk; i++ { if 4 * i >= key.len { break } enc[i] = binary.big_endian_u32(key[4 * i..]) } for i < enc.len { mut t := enc[i - 1] if i % nk == 0 { t = subw(rotw(t)) ^ u32(pow_x[i / nk - 1]) << 24 } else if nk > 6 && i % nk == 4 { t = subw(t) } enc[i] = enc[i - nk] ^ t i++ } // Derive decryption key from encryption key. // Reverse the 4-word round key sets from enc to produce dec. // All sets but the first and last get the MixColumn transform applied. if dec.len == 0 { return } n := enc.len for i = 0; i < n; i += 4 { ei := n - i - 4 for j in 0 .. 4 { mut x := enc[ei + j] if i > 0 && i + 4 < n { x = td0[s_box0[x >> 24]] ^ td1[s_box0[x >> 16 & 0xff]] ^ td2[s_box0[x >> 8 & 0xff]] ^ td3[s_box0[x & u32(0xff)]] } dec[i + j] = x } } }