/**********************************************************************
* path tracing demo
*
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains a path tracer example in less of 500 line of codes
* 3 demo scenes included
*
* This code is inspired by:
* - "Realistic Ray Tracing" by Peter Shirley 2000 ISBN-13: 978-1568814612
* - https://www.kevinbeason.com/smallpt/
*
* Known limitations:
* - there are some approximation errors in the calculations
* - to speed-up the code a cos/sin table is used
* - the full precision code is present but commented, can be restored very easily
* - an higher number of samples ( > 60) can block the program on higher resolutions
*   without a stack size increase
* - as a recursive program this code depend on the stack size,
*   for higher number of samples increase the stack size
*   in linux: ulimit -s byte_size_of_the_stack
*   example: ulimit -s 16000000
* - No OpenMP support
**********************************************************************/
import os
import math
import rand
import time

const (
	inf = f64(1e+10)
	eps = f64(1e-4)
	f_0 = f64(0.0)
)

/***************************** 3D Vector utility struct **********************/
struct Vec {
mut:
   x f64 = f64(0.0)
   y f64 = f64(0.0)
   z f64 = f64(0.0)
}

[inline]
fn (v Vec) + (b Vec) Vec{
	return Vec{ v.x + b.x , v.y + b.y, v.z + b.z }
}

[inline]
fn (v Vec) - (b Vec) Vec{
	return Vec{ v.x - b.x , v.y - b.y, v.z - b.z }
}

[inline]
fn (v Vec) * (b Vec) Vec{
	return Vec{ v.x * b.x , v.y * b.y, v.z * b.z }
}

[inline]
fn (v Vec) dot (b Vec) f64{
	return v.x * b.x + v.y * b.y + v.z * b.z
}

[inline]
fn (v Vec) mult_s (b f64) Vec{
	return Vec{ v.x * b , v.y * b, v.z * b }
}

[inline]
fn (v Vec) cross (b Vec) Vec{
	return Vec{
		v.y * b.z - v.z * b.y,
		v.z * b.x - v.x * b.z,
		v.x * b.y - v.y * b.x
	}
}

[inline]
fn (v Vec) norm () Vec {
	tmp_norm := f64(1.0) / math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z)
	return Vec{ v.x * tmp_norm , v.y * tmp_norm, v.z * tmp_norm }
}

/*********************************Image***************************************/
struct Image {
	width int
	height int
	data &Vec
}

fn new_image(w int, h int) Image {
	return Image{
		width: w,
		height: h,
		data: &Vec(vcalloc(sizeof(Vec)*w*h))
	}
}

// write out a .ppm file
fn (image Image) save_as_ppm(file_name string) {
	npixels := image.width * image.height
	mut f_out := os.create(file_name) or { exit }
	f_out.writeln('P3')
	f_out.writeln('${image.width} ${image.height}')
	f_out.writeln('255')
	for i in 0..npixels {
		c_r := to_int(image.data[i].x)
		c_g := to_int(image.data[i].y)
		c_b := to_int(image.data[i].z)
		f_out.write('$c_r $c_g $c_b ')
	}
	f_out.close()
}

/*********************************** Ray *************************************/
struct Ray {
	o Vec
	d Vec
}

// material types, used in radiance()
enum Refl_t {
	diff,
	spec,
	refr
}

/********************************* Sphere ************************************/
struct Sphere {
	rad f64 = f64(0.0)   // radius
	p Vec                // position
	e Vec                // emission
	c Vec                // color
	refl Refl_t          // reflection type => [diffuse, specular, refractive]
}

fn (sp Sphere) intersect (r Ray) f64 {
	op        := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
	b         := op.dot(r.d)
	mut det   := b * b - op.dot(op) + sp.rad * sp.rad

	if det < 0 {
		return f64(0)
	}

	det = math.sqrt(det)

	mut t := b - det
	if t > eps {
		return t
	}

	t = b + det
	if t > eps {
		return t
	}
	return f64(0)
}

/*********************************** Scenes **********************************
* 0) Cornell Box with 2 spheres
* 1) Sunset
* 2) Psychedelic
* The sphere fileds are: Sphere{radius, position, emission, color, material}
******************************************************************************/
const (
Cen = Vec{50, 40.8, -860} // used by scene 1
spheres = [
[// scene 0 cornnel box
	Sphere{rad: 1e+5, p: Vec{ 1e+5 +1,40.8,81.6} , e: Vec{}        , c: Vec{.75,.25,.25}        , refl: .diff},//Left
	Sphere{rad: 1e+5, p: Vec{-1e+5 +99,40.8,81.6}, e: Vec{}        , c: Vec{.25,.25,.75}        , refl: .diff},//Rght
	Sphere{rad: 1e+5, p: Vec{50,40.8, 1e+5}      , e: Vec{}        , c: Vec{.75,.75,.75}        , refl: .diff},//Back
	Sphere{rad: 1e+5, p: Vec{50,40.8,-1e+5 +170} , e: Vec{}        , c: Vec{}                   , refl: .diff},//Frnt
	Sphere{rad: 1e+5, p: Vec{50, 1e+5, 81.6}     , e: Vec{}        , c: Vec{.75,.75,.75}        , refl: .diff},//Botm
	Sphere{rad: 1e+5, p: Vec{50,-1e+5 +81.6,81.6}, e: Vec{}        , c: Vec{.75,.75,.75}        , refl: .diff},//Top
	Sphere{rad: 16.5, p: Vec{27,16.5,47}         , e: Vec{}        , c: Vec{1,1,1}.mult_s(.999) , refl: .spec},//Mirr
	Sphere{rad: 16.5, p: Vec{73,16.5,78}         , e: Vec{}        , c: Vec{1,1,1}.mult_s(.999) , refl: .refr},//Glas
	Sphere{rad: 600 , p: Vec{50,681.6-.27,81.6}  , e: Vec{12,12,12}, c: Vec{}, refl: .diff} //Lite
],

[// scene 1 sunset
	Sphere{rad: 1600,  p: Vec{1.0,0.0,2.0}.mult_s(3000), e: Vec{1.0,.9,.8}.mult_s(1.2e+1*1.56*2)    , c: Vec{}                     ,  refl: .diff}, // sun
	Sphere{rad: 1560,  p: Vec{1,0,2}.mult_s(3500)      , e: Vec{1.0,.5,.05}.mult_s(4.8e+1*1.56*2)   , c: Vec{}                     ,  refl: .diff}, // horizon sun2
	Sphere{rad: 10000, p: Cen+Vec{0,0,-200}, e: Vec{0.00063842, 0.02001478, 0.28923243}.mult_s(6e-2*8), c: Vec{.7,.7,1}.mult_s(.25),  refl: .diff}, // sky

	Sphere{rad: 100000, p: Vec{50, -100000, 0}     , e: Vec{}                    , c: Vec{.3,.3,.3}   , refl: .diff}, // grnd
	Sphere{rad: 110000, p: Vec{50, -110048.5, 0}   , e: Vec{.9,.5,.05}.mult_s(4) , c: Vec{}, refl: .diff},// horizon brightener
	Sphere{rad: 4e+4  , p: Vec{50, -4e+4-30, -3000}, e: Vec{}                    , c: Vec{.2,.2,.2}   , refl: .diff},// mountains

	Sphere{rad: 26.5, p: Vec{22,26.5,42}, e: Vec{}, c: Vec{1,1,1}.mult_s(.596)     , refl: .spec}, // white Mirr
	Sphere{rad: 13,   p: Vec{75,13,82  }, e: Vec{}, c: Vec{.96,.96,.96}.mult_s(.96), refl: .refr},// Glas
	Sphere{rad: 22,   p: Vec{87,22,24  }, e: Vec{}, c: Vec{.6,.6,.6}.mult_s(.696)  , refl: .refr}    // Glas2
],


[// scene 3 Psychedelic
	Sphere{rad: 150, p: Vec{50+75,28,62}, e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,.9,.8}.mult_s(.93), refl: .refr},
	Sphere{rad: 28 , p: Vec{50+5,-28,62}, e: Vec{1,1,1}.mult_s(1e+1), c: Vec{1,1,1}.mult_s(0)    , refl: .diff},
	Sphere{rad: 300, p: Vec{50,28,62}   , e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,1,1}.mult_s(.93)  , refl: .spec}
]

] // end of scene array

)

/*********************************** Utilities *******************************/
[inline]
fn clamp(x f64) f64 {
	if x < 0 { return 0 }
	if x > 1 { return 1 }
	return x
}

[inline]
fn to_int(x f64) int {
	p := math.pow(clamp(x), f64(1.0/2.2))
	return int(p*f64(255.0)+f64(0.5))
}

fn intersect(r Ray, spheres &Sphere, nspheres int) (bool, f64, int){
	mut d  := f64(0)
	mut t  := inf
	mut id := 0
	for i:=nspheres-1; i >= 0; i-- {
		d = spheres[i].intersect(r)
		if d > 0 && d < t {
			t = d
			id = i
		}
	}
	return (t < inf) , t, id
}

// some casual random function, try to avoid the 0
fn rand_f64() f64 {
	x := (C.rand()+1) & 0x3FFF_FFFF
	return f64(x)/f64(0x3FFF_FFFF)
}


const(
	cache_len = 65536           // the 2*pi angle will be splitted in 65536 part
	cache_mask = cache_len - 1  // mask to speed-up the module process
)

struct Cache {
mut:
	sin_tab [cache_len]f64
	cos_tab [cache_len]f64
}

fn new_tabs() Cache {
	mut c := Cache{}
	inv_len := f64(1.0) / f64(cache_len)
	for i in 0..cache_len {
		x := f64(i) * math.pi * 2.0 * inv_len
		c.sin_tab[i] = math.sin(x)
		c.cos_tab[i] = math.cos(x)
	}
	return c
}

/************* Cache for sin/cos speed-up table and scene selector ***********/
const (
	tabs = new_tabs()
)

/******************* main function for the radiance calculation **************/
fn radiance(r Ray, depthi int, scene_id int) Vec {
	sin_tab := &f64( tabs.sin_tab )
	cos_tab := &f64( tabs.cos_tab )
	mut depth   := depthi      // actual depth in the reflection tree
	mut t       := f64(0)      // distance to intersection
	mut id      := 0           // id of intersected object
	mut res     := false       // result of intersect

	v_1 := f64(1.0)
	//v_2 := f64(2.0)

	scene := spheres[scene_id]
	//res, t, id = intersect(r, id, tb.scene)
	res, t, id = intersect(r, scene.data, scene.len)
	if !res { return Vec{} }  //if miss, return black

	obj := scene[id]        // the hit object

	x := r.o + r.d.mult_s(t)
	n := (x - obj.p).norm()

	nl := if n.dot(r.d) < 0.0 { n } else { n.mult_s(-1) }

	mut f := obj.c

	// max reflection
	mut p := f.z
	if f.x > f.y && f.x > f.z {
		p = f.x
	} else {
		if f.y > f.z {
			p = f.y
		}
	}

	depth++
	if depth > 5 {
		if rand_f64() < p {
			f = f.mult_s(f64(1.0)/p)
		} else {
			return obj.e //R.R.
		}
	}

	if obj.refl == .diff {                  // Ideal DIFFUSE reflection
		// **Full Precision**
		//r1  := f64(2.0 * math.pi) * rand_f64()

		// tabbed speed-up
		r1 := C.rand() & cache_mask

		r2  := rand_f64()
		r2s := math.sqrt(r2)

		w   := nl

		mut u := if math.abs(w.x) > f64(0.1) {
			Vec{0, 1, 0}
		} else {
			Vec{1, 0, 0}
		}
		u = u.cross(w).norm()

		v := w.cross(u)

		// **Full Precision**
		//d := (u.mult_s(math.cos(r1) * r2s) + v.mult_s(math.sin(r1) * r2s) + w.mult_s(1.0 - r2)).norm()

		// tabbed speed-up
		d := (u.mult_s(cos_tab[r1] * r2s) + v.mult_s(sin_tab[r1] * r2s) + w.mult_s(math.sqrt(f64(1.0) - r2))).norm()

		return obj.e + f * radiance(Ray{x, d}, depth, scene_id)
	} else {
		if obj.refl == .spec {            // Ideal SPECULAR reflection
			return obj.e + f * radiance(Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d)) }, depth, scene_id)
		}
	}

	refl_ray := Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))}  // Ideal dielectric REFRACTION
	into     := n.dot(nl) > 0                             // Ray from outside going in?

	nc       := f64(1.0)
	nt       := f64(1.5)

	nnt := if into { nc / nt } else { nt / nc }

	ddn   := r.d.dot(nl)
	cos2t := v_1 - nnt * nnt * (v_1 - ddn * ddn)
	if cos2t < 0.0  {   // Total internal reflection
		return obj.e + f * radiance(refl_ray, depth, scene_id)
	}

	dirc := if into { f64(1) } else { f64(-1) }
	tdir := (r.d.mult_s(nnt) - n.mult_s(dirc * (ddn * nnt + math.sqrt(cos2t)))).norm()

	a  := nt - nc
	b  := nt + nc
	r0 := a * a / (b * b)
	c  := if into { v_1 + ddn } else { v_1 - tdir.dot(n) }

	re := r0 + (v_1 - r0) * c * c * c * c * c
	tr := v_1 - re
	pp  := f64(.25) + f64(.5) * re
	rp := re / pp
	tp := tr / (v_1 - pp)

	mut tmp := Vec{}
	if depth > 2 {
		// Russian roulette
		tmp = if rand_f64() < pp {
			radiance(refl_ray, depth, scene_id).mult_s(rp)
		} else {
			radiance(Ray{x, tdir}, depth, scene_id).mult_s(tp)
		}
	} else {
		tmp = (radiance(refl_ray, depth, scene_id).mult_s(re)) + (radiance( Ray{x, tdir}, depth, scene_id).mult_s(tr))
	}
	return obj.e + (f * tmp)
}

/************************ beam scan routine **********************************/
fn ray_trace(w int, h int, samps int, file_name string, scene_id int) Image {
	image := new_image(w, h)

	// inverse costants
	w1     := f64(1.0 / w)
	h1     := f64(1.0 / h)
	samps1 := f64(1.0 / samps)

	cam   := Ray{Vec{50, 52, 295.6},  Vec{0, -0.042612, -1}.norm()} // cam position, direction
	cx    := Vec{ f64(w) * 0.5135 / f64(h), 0, 0}
	cy    := cx.cross(cam.d).norm().mult_s(0.5135)
	mut r := Vec{}

	// speed-up constants
	v_1 := f64(1.0)
	v_2 := f64(2.0)

	// OpenMP injection point! #pragma omp parallel for schedule(dynamic, 1) shared(c)
	for y:=0; y < h; y++ {
		eprint("\rRendering (${samps * 4} spp) ${(100.0 * f64(y)) / (f64(h) - 1.0):5.2f}%")
		for x in 0..w {

			i := (h - y - 1) * w + x
			mut ivec := &image.data[i]
			// we use sx and sy to perform a square subsampling of 4 samples
			for sy := 0; sy < 2; sy ++ {
				for sx := 0; sx < 2; sx ++ {
					r = Vec{0,0,0}
					for s in 0..samps {
						r1 := v_2 * rand_f64()
						dx := if r1 < v_1 { math.sqrt(r1) - v_1 } else { v_1 - math.sqrt(v_2 - r1) }

						r2 := v_2 * rand_f64()
						dy := if r2 < v_1 { math.sqrt(r2) - v_1 } else { v_1 - math.sqrt(v_2 - r2) }

                        d := cx.mult_s( ( (f64(sx) + 0.5 + dx)*0.5 + f64(x))*w1 - .5) +
							cy.mult_s( ( (f64(sy) + 0.5 + dy)*0.5 + f64(y))*h1 - .5) + cam.d
                        r = r + radiance(Ray{cam.o+d.mult_s(140.0), d.norm()}, 0, scene_id).mult_s(samps1)
					}
					tmp_vec := Vec{clamp(r.x),clamp(r.y),clamp(r.z)}.mult_s(.25)
					*ivec = *ivec + tmp_vec
				}
			}
		}
	}
	return image
}

fn main() {
	if os.args.len > 6 {
		eprintln('Usage:\n     path_tracing [samples] [image.ppm] [scene_n] [width] [height]')
		exit(1)
	}
	mut width := 320 // width of the rendering in pixels
	mut height := 200 // height of the rendering in pixels
	mut samples := 4  // number of samples per pixel, increase for better quality
	mut scene_id := 0 // scene to render [0 cornell box,1 sunset,2 psyco]
	mut file_name := 'image.ppm' // name of the output file in .ppm format

	if os.args.len >= 2 {
		samples = os.args[1].int() / 4
	}
	if os.args.len >= 3 {
		file_name = os.args[2]
	}
	if os.args.len >= 4 {
		scene_id = os.args[3].int()
	}
	if os.args.len >= 5 {
		width = os.args[4].int()
	}
	if os.args.len == 6 {
		height = os.args[5].int()
	}

	// init the rand, using the same seed allows to obtain the same result in different runs
	// change the seed from 2020 for different results
	rand.seed(2020)

	t1:=time.ticks()

	image := ray_trace(width, height, samples, file_name, scene_id)
	t2:=time.ticks()

	eprintln('\nRendering finished. Took: ${t2-t1:5d}ms')

	image.save_as_ppm( file_name )
	t3:=time.ticks()

	eprintln('Image saved as [${file_name}]. Took: ${t3-t2:5d}ms')
}