module math struct Fi { f f64 i int } const ( vf_ = [f64(4.9790119248836735e+00), 7.7388724745781045e+00, -2.7688005719200159e-01, -5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00, 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00, -8.6859247685756013e+00] // The expected results below were computed by the high precision calculators // at https://keisan.casio.com/. More exact input values (array vf_[], above) // were obtained by printing them with "%.26f". The answers were calculated // to 26 digits (by using the "Digit number" drop-down control of each // calculator). acos_ = [f64(1.0496193546107222142571536e+00), 6.8584012813664425171660692e-01, 1.5984878714577160325521819e+00, 2.0956199361475859327461799e+00, 2.7053008467824138592616927e-01, 1.2738121680361776018155625e+00, 1.0205369421140629186287407e+00, 1.2945003481781246062157835e+00, 1.3872364345374451433846657e+00, 2.6231510803970463967294145e+00] acosh_ = [f64(2.4743347004159012494457618e+00), 2.8576385344292769649802701e+00, 7.2796961502981066190593175e-01, 2.4796794418831451156471977e+00, 3.0552020742306061857212962e+00, 2.044238592688586588942468e+00, 2.5158701513104513595766636e+00, 1.99050839282411638174299e+00, 1.6988625798424034227205445e+00, 2.9611454842470387925531875e+00] asin_ = [f64(5.2117697218417440497416805e-01), 8.8495619865825236751471477e-01, -2.769154466281941332086016e-02, -5.2482360935268931351485822e-01, 1.3002662421166552333051524e+00, 2.9698415875871901741575922e-01, 5.5025938468083370060258102e-01, 2.7629597861677201301553823e-01, 1.83559892257451475846656e-01, -1.0523547536021497774980928e+00] asinh_ = [f64(2.3083139124923523427628243e+00), 2.743551594301593620039021e+00, -2.7345908534880091229413487e-01, -2.3145157644718338650499085e+00, 2.9613652154015058521951083e+00, 1.7949041616585821933067568e+00, 2.3564032905983506405561554e+00, 1.7287118790768438878045346e+00, 1.3626658083714826013073193e+00, -2.8581483626513914445234004e+00] atan_ = [f64(1.372590262129621651920085e+00), 1.442290609645298083020664e+00, -2.7011324359471758245192595e-01, -1.3738077684543379452781531e+00, 1.4673921193587666049154681e+00, 1.2415173565870168649117764e+00, 1.3818396865615168979966498e+00, 1.2194305844639670701091426e+00, 1.0696031952318783760193244e+00, -1.4561721938838084990898679e+00] atanh_ = [f64(5.4651163712251938116878204e-01), 1.0299474112843111224914709e+00, -2.7695084420740135145234906e-02, -5.5072096119207195480202529e-01, 1.9943940993171843235906642e+00, 3.01448604578089708203017e-01, 5.8033427206942188834370595e-01, 2.7987997499441511013958297e-01, 1.8459947964298794318714228e-01, -1.3273186910532645867272502e+00] atan2_ = [f64(1.1088291730037004444527075e+00), 9.1218183188715804018797795e-01, 1.5984772603216203736068915e+00, 2.0352918654092086637227327e+00, 8.0391819139044720267356014e-01, 1.2861075249894661588866752e+00, 1.0889904479131695712182587e+00, 1.3044821793397925293797357e+00, 1.3902530903455392306872261e+00, 2.2859857424479142655411058e+00] ceil_ = [f64(5.0000000000000000e+00), 8.0000000000000000e+00, copysign(0, -1), -5.0000000000000000e+00, 1.0000000000000000e+01, 3.0000000000000000e+00, 6.0000000000000000e+00, 3.0000000000000000e+00, 2.0000000000000000e+00, -8.0000000000000000e+00] cos_ = [f64(2.634752140995199110787593e-01), 1.148551260848219865642039e-01, 9.6191297325640768154550453e-01, 2.938141150061714816890637e-01, -9.777138189897924126294461e-01, -9.7693041344303219127199518e-01, 4.940088096948647263961162e-01, -9.1565869021018925545016502e-01, -2.517729313893103197176091e-01, -7.39241351595676573201918e-01] // Results for 100000 * pi + vf_[i] cos_large_ = [f64(2.634752141185559426744e-01), 1.14855126055543100712e-01, 9.61912973266488928113e-01, 2.9381411499556122552e-01, -9.777138189880161924641e-01, -9.76930413445147608049e-01, 4.940088097314976789841e-01, -9.15658690217517835002e-01, -2.51772931436786954751e-01, -7.3924135157173099849e-01] cosh_ = [f64(7.2668796942212842775517446e+01), 1.1479413465659254502011135e+03, 1.0385767908766418550935495e+00, 7.5000957789658051428857788e+01, 7.655246669605357888468613e+03, 9.3567491758321272072888257e+00, 9.331351599270605471131735e+01, 7.6833430994624643209296404e+00, 3.1829371625150718153881164e+00, 2.9595059261916188501640911e+03] exp_ = [f64(1.4533071302642137507696589e+02), 2.2958822575694449002537581e+03, 7.5814542574851666582042306e-01, 6.6668778421791005061482264e-03, 1.5310493273896033740861206e+04, 1.8659907517999328638667732e+01, 1.8662167355098714543942057e+02, 1.5301332413189378961665788e+01, 6.2047063430646876349125085e+00, 1.6894712385826521111610438e-04] expm1_ = [f64(5.105047796122957327384770212e-02), 8.046199708567344080562675439e-02, -2.764970978891639815187418703e-03, -4.8871434888875355394330300273e-02, 1.0115864277221467777117227494e-01, 2.969616407795910726014621657e-02, 5.368214487944892300914037972e-02, 2.765488851131274068067445335e-02, 1.842068661871398836913874273e-02, -8.3193870863553801814961137573e-02] expm1_large_ = [f64(4.2031418113550844e+21), 4.0690789717473863e+33, -0.9372627915981363e+00, -1.0, 7.077694784145933e+41, 5.117936223839153e+12, 5.124137759001189e+22, 7.03546003972584e+11, 8.456921800389698e+07, -1.0] exp2_ = [f64(3.1537839463286288034313104e+01), 2.1361549283756232296144849e+02, 8.2537402562185562902577219e-01, 3.1021158628740294833424229e-02, 7.9581744110252191462569661e+02, 7.6019905892596359262696423e+00, 3.7506882048388096973183084e+01, 6.6250893439173561733216375e+00, 3.5438267900243941544605339e+00, 2.4281533133513300984289196e-03] fabs_ = [f64(4.9790119248836735e+00), 7.7388724745781045e+00, 2.7688005719200159e-01, 5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00, 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00, 8.6859247685756013e+00] floor_ = [f64(4.0000000000000000e+00), 7.0000000000000000e+00, -1.0000000000000000e+00, -6.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00, 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, -9.0000000000000000e+00] fmod_ = [f64(4.197615023265299782906368e-02), 2.261127525421895434476482e+00, 3.231794108794261433104108e-02, 4.989396381728925078391512e+00, 3.637062928015826201999516e-01, 1.220868282268106064236690e+00, 4.770916568540693347699744e+00, 1.816180268691969246219742e+00, 8.734595415957246977711748e-01, 1.314075231424398637614104e+00] frexp_ = [Fi{6.2237649061045918750e-01, 3}, Fi{9.6735905932226306250e-01, 3}, Fi{-5.5376011438400318000e-01, -1}, Fi{-6.2632545228388436250e-01, 3}, Fi{6.02268356699901081250e-01, 4}, Fi{7.3159430981099115000e-01, 2}, Fi{6.5363542893241332500e-01, 3}, Fi{6.8198497760900255000e-01, 2}, Fi{9.1265404584042750000e-01, 1}, Fi{-5.4287029803597508250e-01, 4}] gamma_ = [f64(2.3254348370739963835386613898e+01), 2.991153837155317076427529816e+03, -4.561154336726758060575129109e+00, 7.719403468842639065959210984e-01, 1.6111876618855418534325755566e+05, 1.8706575145216421164173224946e+00, 3.4082787447257502836734201635e+01, 1.579733951448952054898583387e+00, 9.3834586598354592860187267089e-01, -2.093995902923148389186189429e-05] log_gamma_ = [Fi{3.146492141244545774319734e+00, 1}, Fi{8.003414490659126375852113e+00, 1}, Fi{1.517575735509779707488106e+00, -1}, Fi{-2.588480028182145853558748e-01, 1}, Fi{1.1989897050205555002007985e+01, 1}, Fi{6.262899811091257519386906e-01, 1}, Fi{3.5287924899091566764846037e+00, 1}, Fi{4.5725644770161182299423372e-01, 1}, Fi{-6.363667087767961257654854e-02, 1}, Fi{-1.077385130910300066425564e+01, -1}] log_ = [f64(1.605231462693062999102599e+00), 2.0462560018708770653153909e+00, -1.2841708730962657801275038e+00, 1.6115563905281545116286206e+00, 2.2655365644872016636317461e+00, 1.0737652208918379856272735e+00, 1.6542360106073546632707956e+00, 1.0035467127723465801264487e+00, 6.0174879014578057187016475e-01, 2.161703872847352815363655e+00] logb_ = [f64(2.0000000000000000e+00), 2.0000000000000000e+00, -2.0000000000000000e+00, 2.0000000000000000e+00, 3.0000000000000000e+00, 1.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, 0.0000000000000000e+00, 3.0000000000000000e+00] log10_ = [f64(6.9714316642508290997617083e-01), 8.886776901739320576279124e-01, -5.5770832400658929815908236e-01, 6.998900476822994346229723e-01, 9.8391002850684232013281033e-01, 4.6633031029295153334285302e-01, 7.1842557117242328821552533e-01, 4.3583479968917773161304553e-01, 2.6133617905227038228626834e-01, 9.3881606348649405716214241e-01] log1p_ = [f64(4.8590257759797794104158205e-02), 7.4540265965225865330849141e-02, -2.7726407903942672823234024e-03, -5.1404917651627649094953380e-02, 9.1998280672258624681335010e-02, 2.8843762576593352865894824e-02, 5.0969534581863707268992645e-02, 2.6913947602193238458458594e-02, 1.8088493239630770262045333e-02, -9.0865245631588989681559268e-02] log2_ = [f64(2.3158594707062190618898251e+00), 2.9521233862883917703341018e+00, -1.8526669502700329984917062e+00, 2.3249844127278861543568029e+00, 3.268478366538305087466309e+00, 1.5491157592596970278166492e+00, 2.3865580889631732407886495e+00, 1.447811865817085365540347e+00, 8.6813999540425116282815557e-01, 3.118679457227342224364709e+00] modf_ = [[f64(4.0000000000000000e+00), 9.7901192488367350108546816e-01], [f64(7.0000000000000000e+00), 7.3887247457810456552351752e-01], [f64(-0.0), -2.7688005719200159404635997e-01], [f64(-5.0000000000000000e+00), -1.060361827107492160848778e-02], [f64(9.0000000000000000e+00), 6.3629370719841737980004837e-01], [f64(2.0000000000000000e+00), 9.2637723924396464525443662e-01], [f64(5.0000000000000000e+00), 2.2908343145930665230025625e-01], [f64(2.0000000000000000e+00), 7.2793991043601025126008608e-01], [f64(1.0000000000000000e+00), 8.2530809168085506044576505e-01], [f64(-8.0000000000000000e+00), -6.8592476857560136238589621e-01]] nextafter32_ = [4.979012489318848e+00, 7.738873004913330e+00, -2.768800258636475e-01, -5.010602951049805e+00, 9.636294364929199e+00, 2.926377534866333e+00, 5.229084014892578e+00, 2.727940082550049e+00, 1.825308203697205e+00, -8.685923576354980e+00] nextafter64_ = [f64(4.97901192488367438926388786e+00), 7.73887247457810545370193722e+00, -2.7688005719200153853520874e-01, -5.01060361827107403343006808e+00, 9.63629370719841915615688777e+00, 2.92637723924396508934364647e+00, 5.22908343145930754047867595e+00, 2.72793991043601069534929593e+00, 1.82530809168085528249036997e+00, -8.68592476857559958602905681e+00] pow_ = [f64(9.5282232631648411840742957e+04), 5.4811599352999901232411871e+07, 5.2859121715894396531132279e-01, 9.7587991957286474464259698e-06, 4.328064329346044846740467e+09, 8.4406761805034547437659092e+02, 1.6946633276191194947742146e+05, 5.3449040147551939075312879e+02, 6.688182138451414936380374e+01, 2.0609869004248742886827439e-09] remainder_ = [f64(4.197615023265299782906368e-02), 2.261127525421895434476482e+00, 3.231794108794261433104108e-02, -2.120723654214984321697556e-02, 3.637062928015826201999516e-01, 1.220868282268106064236690e+00, -4.581668629186133046005125e-01, -9.117596417440410050403443e-01, 8.734595415957246977711748e-01, 1.314075231424398637614104e+00] round_ = [f64(5), 8, copysign(0, -1), -5, 10, 3, 5, 3, 2, -9] signbit_ = [false, false, true, true, false, false, false, false, false, true] sin_ = [f64(-9.6466616586009283766724726e-01), 9.9338225271646545763467022e-01, -2.7335587039794393342449301e-01, 9.5586257685042792878173752e-01, -2.099421066779969164496634e-01, 2.135578780799860532750616e-01, -8.694568971167362743327708e-01, 4.019566681155577786649878e-01, 9.6778633541687993721617774e-01, -6.734405869050344734943028e-01] // Results for 100000 * pi + vf_[i] sin_large_ = [f64(-9.646661658548936063912e-01), 9.933822527198506903752e-01, -2.7335587036246899796e-01, 9.55862576853689321268e-01, -2.099421066862688873691e-01, 2.13557878070308981163e-01, -8.694568970959221300497e-01, 4.01956668098863248917e-01, 9.67786335404528727927e-01, -6.7344058693131973066e-01] sinh_ = [f64(7.2661916084208532301448439e+01), 1.1479409110035194500526446e+03, -2.8043136512812518927312641e-01, -7.499429091181587232835164e+01, 7.6552466042906758523925934e+03, 9.3031583421672014313789064e+00, 9.330815755828109072810322e+01, 7.6179893137269146407361477e+00, 3.021769180549615819524392e+00, -2.95950575724449499189888e+03] sqrt_ = [f64(2.2313699659365484748756904e+00), 2.7818829009464263511285458e+00, 5.2619393496314796848143251e-01, 2.2384377628763938724244104e+00, 3.1042380236055381099288487e+00, 1.7106657298385224403917771e+00, 2.286718922705479046148059e+00, 1.6516476350711159636222979e+00, 1.3510396336454586262419247e+00, 2.9471892997524949215723329e+00] tan_ = [f64(-3.661316565040227801781974e+00), 8.64900232648597589369854e+00, -2.8417941955033612725238097e-01, 3.253290185974728640827156e+00, 2.147275640380293804770778e-01, -2.18600910711067004921551e-01, -1.760002817872367935518928e+00, -4.389808914752818126249079e-01, -3.843885560201130679995041e+00, 9.10988793377685105753416e-01] // Results for 100000 * pi + vf_[i] tan_large_ = [f64(-3.66131656475596512705e+00), 8.6490023287202547927e+00, -2.841794195104782406e-01, 3.2532901861033120983e+00, 2.14727564046880001365e-01, -2.18600910700688062874e-01, -1.760002817699722747043e+00, -4.38980891453536115952e-01, -3.84388555942723509071e+00, 9.1098879344275101051e-01] tanh_ = [f64(9.9990531206936338549262119e-01), 9.9999962057085294197613294e-01, -2.7001505097318677233756845e-01, -9.9991110943061718603541401e-01, 9.9999999146798465745022007e-01, 9.9427249436125236705001048e-01, 9.9994257600983138572705076e-01, 9.9149409509772875982054701e-01, 9.4936501296239685514466577e-01, -9.9999994291374030946055701e-01] trunc_ = [f64(4.0000000000000000e+00), 7.0000000000000000e+00, copysign(0, -1), -5.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00, 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, -8.0000000000000000e+00] ) fn soclose(a f64, b f64, e_ f64) bool { return tolerance(a, b, e_) } fn test_nan() { nan_f64 := nan() assert nan_f64 != nan_f64 nan_f32 := f32(nan_f64) assert nan_f32 != nan_f32 } fn test_angle_diff() { for pair in [ [pi, pi_2, -pi_2], [pi_2 * 3.0, pi_2, -pi], [pi / 6.0, two_thirds * pi, pi_2], ] { assert angle_diff(pair[0], pair[1]) == pair[2] } } fn test_acos() { for i := 0; i < math.vf_.len; i++ { a := math.vf_[i] / 10 f := acos(a) assert soclose(math.acos_[i], f, 1e-7) } vfacos_sc_ := [-pi, 1, pi, nan()] acos_sc_ := [nan(), 0, nan(), nan()] for i := 0; i < vfacos_sc_.len; i++ { f := acos(vfacos_sc_[i]) assert alike(acos_sc_[i], f) } } fn test_acosh() { for i := 0; i < math.vf_.len; i++ { a := 1.0 + abs(math.vf_[i]) f := acosh(a) assert veryclose(math.acosh_[i], f) } vfacosh_sc_ := [inf(-1), 0.5, 1, inf(1), nan()] acosh_sc_ := [nan(), nan(), 0, inf(1), nan()] for i := 0; i < vfacosh_sc_.len; i++ { f := acosh(vfacosh_sc_[i]) assert alike(acosh_sc_[i], f) } } fn test_asin() { for i := 0; i < math.vf_.len; i++ { a := math.vf_[i] / 10 f := asin(a) assert veryclose(math.asin_[i], f) } vfasin_sc_ := [-pi, copysign(0, -1), 0, pi, nan()] asin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()] for i := 0; i < vfasin_sc_.len; i++ { f := asin(vfasin_sc_[i]) assert alike(asin_sc_[i], f) } } fn test_asinh() { for i := 0; i < math.vf_.len; i++ { f := asinh(math.vf_[i]) assert veryclose(math.asinh_[i], f) } vfasinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] asinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfasinh_sc_.len; i++ { f := asinh(vfasinh_sc_[i]) assert alike(asinh_sc_[i], f) } } fn test_atan() { for i := 0; i < math.vf_.len; i++ { f := atan(math.vf_[i]) assert veryclose(math.atan_[i], f) } vfatan_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] atan_sc_ := [f64(-pi / 2), copysign(0, -1), 0, pi / 2, nan()] for i := 0; i < vfatan_sc_.len; i++ { f := atan(vfatan_sc_[i]) assert alike(atan_sc_[i], f) } } fn test_atanh() { for i := 0; i < math.vf_.len; i++ { a := math.vf_[i] / 10 f := atanh(a) assert veryclose(math.atanh_[i], f) } vfatanh_sc_ := [inf(-1), -pi, -1, copysign(0, -1), 0, 1, pi, inf(1), nan()] atanh_sc_ := [nan(), nan(), inf(-1), copysign(0, -1), 0, inf(1), nan(), nan(), nan()] for i := 0; i < vfatanh_sc_.len; i++ { f := atanh(vfatanh_sc_[i]) assert alike(atanh_sc_[i], f) } } fn test_atan2() { for i := 0; i < math.vf_.len; i++ { f := atan2(10, math.vf_[i]) assert veryclose(math.atan2_[i], f) } vfatan2_sc_ := [[inf(-1), inf(-1)], [inf(-1), -pi], [inf(-1), 0], [inf(-1), pi], [inf(-1), inf(1)], [inf(-1), nan()], [-pi, inf(-1)], [-pi, 0], [-pi, inf(1)], [-pi, nan()], [f64(-0.0), inf(-1)], [f64(-0.0), -pi], [f64(-0.0), -0.0], [f64(-0.0), 0], [f64(-0.0), pi], [f64(-0.0), inf(1)], [f64(-0.0), nan()], [f64(0), inf(-1)], [f64(0), -pi], [f64(0), -0.0], [f64(0), 0], [f64(0), pi], [f64(0), inf(1)], [f64(0), nan()], [pi, inf(-1)], [pi, 0], [pi, inf(1)], [pi, nan()], [inf(1), inf(-1)], [inf(1), -pi], [inf(1), 0], [inf(1), pi], [inf(1), inf(1)], [inf(1), nan()], [nan(), nan()]] atan2_sc_ := [f64(-3.0) * pi / 4.0, /* atan2(-inf, -inf) */ -pi / 2, /* atan2(-inf, -pi) */ -pi / 2, /* atan2(-inf, +0) */ -pi / 2, /* atan2(-inf, pi) */ -pi / 4, /* atan2(-inf, +inf) */ nan(), /* atan2(-inf, nan) */ -pi, /* atan2(-pi, -inf) */ -pi / 2, /* atan2(-pi, +0) */ -0.0, /* atan2(-pi, inf) */ nan(), /* atan2(-pi, nan) */ -pi, /* atan2(-0, -inf) */ -pi, /* atan2(-0, -pi) */ -pi, /* atan2(-0, -0) */ -0.0, /* atan2(-0, +0) */ -0.0, /* atan2(-0, pi) */ -0.0, /* atan2(-0, +inf) */ nan(), /* atan2(-0, nan) */ pi, /* atan2(+0, -inf) */ pi, /* atan2(+0, -pi) */ pi, /* atan2(+0, -0) */ 0, /* atan2(+0, +0) */ 0, /* atan2(+0, pi) */ 0, /* atan2(+0, +inf) */ nan(), /* atan2(+0, nan) */ pi, /* atan2(pi, -inf) */ pi / 2, /* atan2(pi, +0) */ 0, /* atan2(pi, +inf) */ nan(), /* atan2(pi, nan) */ 3.0 * pi / 4, /* atan2(+inf, -inf) */ pi / 2, /* atan2(+inf, -pi) */ pi / 2, /* atan2(+inf, +0) */ pi / 2, /* atan2(+inf, pi) */ pi / 4, /* atan2(+inf, +inf) */ nan(), /* atan2(+inf, nan) */ nan(), /* atan2(nan, nan) */ ] for i := 0; i < vfatan2_sc_.len; i++ { f := atan2(vfatan2_sc_[i][0], vfatan2_sc_[i][1]) assert alike(atan2_sc_[i], f) } } fn test_ceil() { // for i := 0; i < vf_.len; i++ { // f := ceil(vf_[i]) // assert alike(ceil_[i], f) // } vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfceil_sc_.len; i++ { f := ceil(vfceil_sc_[i]) assert alike(ceil_sc_[i], f) } } fn test_cos() { for i := 0; i < math.vf_.len; i++ { f := cos(math.vf_[i]) assert veryclose(math.cos_[i], f) } vfcos_sc_ := [inf(-1), inf(1), nan()] cos_sc_ := [nan(), nan(), nan()] for i := 0; i < vfcos_sc_.len; i++ { f := cos(vfcos_sc_[i]) assert alike(cos_sc_[i], f) } } fn test_cosh() { for i := 0; i < math.vf_.len; i++ { f := cosh(math.vf_[i]) assert close(math.cosh_[i], f) } vfcosh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] cosh_sc_ := [inf(1), 1, 1, inf(1), nan()] for i := 0; i < vfcosh_sc_.len; i++ { f := cosh(vfcosh_sc_[i]) assert alike(cosh_sc_[i], f) } } fn test_expm1() { for i := 0; i < math.vf_.len; i++ { a := math.vf_[i] / 100 f := expm1(a) assert veryclose(math.expm1_[i], f) } for i := 0; i < math.vf_.len; i++ { a := math.vf_[i] * 10 f := expm1(a) assert close(math.expm1_large_[i], f) } // vfexpm1_sc_ := [f64(-710), copysign(0, -1), 0, 710, inf(1), nan()] // expm1_sc_ := [f64(-1), copysign(0, -1), 0, inf(1), inf(1), nan()] // for i := 0; i < vfexpm1_sc_.len; i++ { // f := expm1(vfexpm1_sc_[i]) // assert alike(expm1_sc_[i], f) // } } fn test_abs() { for i := 0; i < math.vf_.len; i++ { f := abs(math.vf_[i]) assert math.fabs_[i] == f } } fn test_abs_zero() { ret1 := abs(0) println(ret1) assert '${ret1}' == '0' ret2 := abs(0.0) println(ret2) assert '${ret2}' == '0.0' } fn test_floor() { for i := 0; i < math.vf_.len; i++ { f := floor(math.vf_[i]) assert alike(math.floor_[i], f) } vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfceil_sc_.len; i++ { f := floor(vfceil_sc_[i]) assert alike(ceil_sc_[i], f) } } fn test_max() { for i := 0; i < math.vf_.len; i++ { f := max(math.vf_[i], math.ceil_[i]) assert math.ceil_[i] == f } } fn test_min() { for i := 0; i < math.vf_.len; i++ { f := min(math.vf_[i], math.floor_[i]) assert math.floor_[i] == f } } fn test_clamp() { assert clamp(2, 5, 10) == 5 assert clamp(7, 5, 10) == 7 assert clamp(15, 5, 10) == 10 assert clamp(5, 5, 10) == 5 assert clamp(10, 5, 10) == 10 } fn test_signi() { assert signi(inf(-1)) == -1 assert signi(-72234878292.4586129) == -1 assert signi(-10) == -1 assert signi(-pi) == -1 assert signi(-1) == -1 assert signi(-0.000000000001) == -1 assert signi(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1 assert signi(-0.0) == -1 // assert signi(inf(1)) == 1 assert signi(72234878292.4586129) == 1 assert signi(10) == 1 assert signi(pi) == 1 assert signi(1) == 1 assert signi(0.000000000001) == 1 assert signi(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1 assert signi(0.0) == 1 assert signi(nan()) == 1 } fn test_sign() { assert sign(inf(-1)) == -1.0 assert sign(-72234878292.4586129) == -1.0 assert sign(-10) == -1.0 assert sign(-pi) == -1.0 assert sign(-1) == -1.0 assert sign(-0.000000000001) == -1.0 assert sign(-0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == -1.0 assert sign(-0.0) == -1.0 // assert sign(inf(1)) == 1.0 assert sign(72234878292.4586129) == 1 assert sign(10) == 1.0 assert sign(pi) == 1.0 assert sign(1) == 1.0 assert sign(0.000000000001) == 1.0 assert sign(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001) == 1.0 assert sign(0.0) == 1.0 assert is_nan(sign(nan())) assert is_nan(sign(-nan())) } fn test_mod() { for i := 0; i < math.vf_.len; i++ { f := mod(10, math.vf_[i]) assert math.fmod_[i] == f } // verify precision of result for extreme inputs f := mod(5.9790119248836734e+200, 1.1258465975523544) assert (0.6447968302508578) == f } fn test_cbrt() { cbrts := [2.0, 10, 56] for idx, i in [8.0, 1000, 175_616] { assert cbrt(i) == cbrts[idx] } } fn test_exp() { for i := 0; i < math.vf_.len; i++ { f := exp(math.vf_[i]) assert veryclose(math.exp_[i], f) } vfexp_sc_ := [inf(-1), -2000, 2000, inf(1), nan(), /* smallest f64 that overflows Exp(x) */ 7.097827128933841e+02, 1.48852223e+09, 1.4885222e+09, 1, /* near zero */ 3.725290298461915e-09, /* denormal */ -740] exp_sc_ := [f64(0), 0, inf(1), inf(1), nan(), inf(1), inf(1), inf(1), 2.718281828459045, 1.0000000037252903, 4.2e-322] for i := 0; i < vfexp_sc_.len; i++ { f := exp(vfexp_sc_[i]) assert alike(exp_sc_[i], f) } } fn test_exp2() { for i := 0; i < math.vf_.len; i++ { f := exp2(math.vf_[i]) assert soclose(math.exp2_[i], f, 1e-9) } vfexp2_sc_ := [f64(-2000), 2000, inf(1), nan(), /* smallest f64 that overflows Exp2(x) */ 1024, /* near underflow */ -1.07399999999999e+03, /* near zero */ 3.725290298461915e-09] exp2_sc_ := [f64(0), inf(1), inf(1), nan(), inf(1), 5e-324, 1.0000000025821745] for i := 0; i < vfexp2_sc_.len; i++ { f := exp2(vfexp2_sc_[i]) assert alike(exp2_sc_[i], f) } for n := -1074; n < 1024; n++ { f := exp2(f64(n)) vf := ldexp(1, n) assert veryclose(f, vf) } } fn test_frexp() { for i := 0; i < math.vf_.len; i++ { f, j := frexp(math.vf_[i]) assert veryclose(math.frexp_[i].f, f) || math.frexp_[i].i != j } // vffrexp_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] // frexp_sc_ := [Fi{inf(-1), 0}, Fi{copysign(0, -1), 0}, Fi{0, 0}, // Fi{inf(1), 0}, Fi{nan(), 0}] // for i := 0; i < vffrexp_sc_.len; i++ { // f, j := frexp(vffrexp_sc_[i]) // assert alike(frexp_sc_[i].f, f) || frexp_sc_[i].i != j // } } fn test_gamma() { vfgamma_ := [[inf(1), inf(1)], [inf(-1), nan()], [f64(0), inf(1)], [f64(-0.0), inf(-1)], [nan(), nan()], [f64(-1), nan()], [f64(-2), nan()], [f64(-3), nan()], [f64(-1e+16), nan()], [f64(-1e+300), nan()], [f64(1.7e+308), inf(1)], /* Test inputs inspi_red by Python test suite. */ // Outputs computed at high precision by PARI/GP. // If recomputing table entries), be careful to use // high-precision (%.1000g) formatting of the f64 inputs. // For example), -2.0000000000000004 is the f64 with exact value //-2.00000000000000044408920985626161695), and // gamma(-2.0000000000000004) = -1249999999999999.5386078562728167651513), while // gamma(-2.00000000000000044408920985626161695) = -1125899906826907.2044875028130093136826. // Thus the table lists -1.1258999068426235e+15 as the answer. [f64(0.5), 1.772453850905516], [f64(1.5), 0.886226925452758], [f64(2.5), 1.329340388179137], [f64(3.5), 3.3233509704478426], [f64(-0.5), -3.544907701811032], [f64(-1.5), 2.363271801207355], [f64(-2.5), -0.9453087204829419], [f64(-3.5), 0.2700882058522691], [f64(0.1), 9.51350769866873], [f64(0.01), 99.4325851191506], [f64(1e-08), 9.999999942278434e+07], [f64(1e-16), 1e+16], [f64(0.001), 999.4237724845955], [f64(1e-16), 1e+16], [f64(1e-308), 1e+308], [f64(5.6e-309), 1.7857142857142864e+308], [f64(5.5e-309), inf(1)], [f64(1e-309), inf(1)], [f64(1e-323), inf(1)], [f64(5e-324), inf(1)], [f64(-0.1), -10.686287021193193], [f64(-0.01), -100.58719796441078], [f64(-1e-08), -1.0000000057721567e+08], [f64(-1e-16), -1e+16], [f64(-0.001), -1000.5782056293586], [f64(-1e-16), -1e+16], [f64(-1e-308), -1e+308], [f64(-5.6e-309), -1.7857142857142864e+308], [f64(-5.5e-309), inf(-1)], [f64(-1e-309), inf(-1)], [f64(-1e-323), inf(-1)], [f64(-5e-324), inf(-1)], [f64(-0.9999999999999999), -9.007199254740992e+15], [f64(-1.0000000000000002), 4.5035996273704955e+15], [f64(-1.9999999999999998), 2.2517998136852485e+15], [f64(-2.0000000000000004), -1.1258999068426235e+15], [f64(-100.00000000000001), -7.540083334883109e-145], [f64(-99.99999999999999), 7.540083334884096e-145], [f64(17), 2.0922789888e+13], [f64(171), 7.257415615307999e+306], [f64(171.6), 1.5858969096672565e+308], [f64(171.624), 1.7942117599248104e+308], [f64(171.625), inf(1)], [f64(172), inf(1)], [f64(2000), inf(1)], [f64(-100.5), -3.3536908198076787e-159], [f64(-160.5), -5.255546447007829e-286], [f64(-170.5), -3.3127395215386074e-308], [f64(-171.5), 1.9316265431712e-310], [f64(-176.5), -1.196e-321], [f64(-177.5), 5e-324], [f64(-178.5), -0.0], [f64(-179.5), 0], [f64(-201.0001), 0], [f64(-202.9999), -0.0], [f64(-1000.5), -0.0], [f64(-1.0000000003e+09), -0.0], [f64(-4.5035996273704955e+15), 0], [f64(-63.349078729022985), 4.177797167776188e-88], [f64(-127.45117632943295), 1.183111089623681e-214]] _ := vfgamma_[0][0] // @todo: Figure out solution for C backend // for i := 0; i < math.vf_.len; i++ { // f := gamma(math.vf_[i]) // assert veryclose(math.gamma_[i], f) // } // for _, g in vfgamma_ { // f := gamma(g[0]) // if is_nan(g[1]) || is_inf(g[1], 0) || g[1] == 0 || f == 0 { // assert alike(g[1], f) // } else if g[0] > -50 && g[0] <= 171 { // assert veryclose(g[1], f) // } else { // assert soclose(g[1], f, 1e-9) // } // } } fn test_hypot() { for i := 0; i < math.vf_.len; i++ { a := abs(1e+200 * math.tanh_[i] * sqrt(2.0)) f := hypot(1e+200 * math.tanh_[i], 1e+200 * math.tanh_[i]) assert veryclose(a, f) } vfhypot_sc_ := [[inf(-1), inf(-1)], [inf(-1), 0], [inf(-1), inf(1)], [inf(-1), nan()], [f64(-0.0), -0.0], [f64(-0.0), 0], [f64(0), -0.0], [f64(0), 0], /* +0,0 */ [f64(0), inf(-1)], [f64(0), inf(1)], [f64(0), nan()], [inf(1), inf(-1)], [inf(1), 0], [inf(1), inf(1)], [inf(1), nan()], [nan(), inf(-1)], [nan(), 0], [nan(), inf(1)], [nan(), nan()]] hypot_sc_ := [inf(1), inf(1), inf(1), inf(1), 0, 0, 0, 0, inf(1), inf(1), nan(), inf(1), inf(1), inf(1), inf(1), inf(1), nan(), inf(1), nan()] for i := 0; i < vfhypot_sc_.len; i++ { f := hypot(vfhypot_sc_[i][0], vfhypot_sc_[i][1]) assert alike(hypot_sc_[i], f) } } fn test_ldexp() { for i := 0; i < math.vf_.len; i++ { f := ldexp(math.frexp_[i].f, math.frexp_[i].i) assert veryclose(math.vf_[i], f) } vffrexp_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] frexp_sc_ := [Fi{inf(-1), 0}, Fi{copysign(0, -1), 0}, Fi{0, 0}, Fi{inf(1), 0}, Fi{nan(), 0}] for i := 0; i < vffrexp_sc_.len; i++ { f := ldexp(frexp_sc_[i].f, frexp_sc_[i].i) assert alike(vffrexp_sc_[i], f) } vfldexp_sc_ := [Fi{0, 0}, Fi{0, -1075}, Fi{0, 1024}, Fi{copysign(0, -1), 0}, Fi{copysign(0, -1), -1075}, Fi{copysign(0, -1), 1024}, Fi{inf(1), 0}, Fi{inf(1), -1024}, Fi{inf(-1), 0}, Fi{inf(-1), -1024}, Fi{nan(), -1024}, Fi{10, 1 << (u64(sizeof(int) - 1) * 8)}, Fi{10, -(1 << (u64(sizeof(int) - 1) * 8))}] ldexp_sc_ := [f64(0), 0, 0, copysign(0, -1), copysign(0, -1), copysign(0, -1), inf(1), inf(1), inf(-1), inf(-1), nan(), inf(1), 0] for i := 0; i < vfldexp_sc_.len; i++ { f := ldexp(vfldexp_sc_[i].f, vfldexp_sc_[i].i) assert alike(ldexp_sc_[i], f) } } fn test_log_gamma() { for i := 0; i < math.vf_.len; i++ { f, s := log_gamma_sign(math.vf_[i]) assert soclose(math.log_gamma_[i].f, f, 1e-6) && math.log_gamma_[i].i == s } // vflog_gamma_sc_ := [inf(-1), -3, 0, 1, 2, inf(1), nan()] // log_gamma_sc_ := [Fi{inf(-1), 1}, Fi{inf(1), 1}, Fi{inf(1), 1}, // Fi{0, 1}, Fi{0, 1}, Fi{inf(1), 1}, Fi{nan(), 1}] // for i := 0; i < vflog_gamma_sc_.len; i++ { // f, s := log_gamma_sign(vflog_gamma_sc_[i]) // assert alike(log_gamma_sc_[i].f, f) && log_gamma_sc_[i].i == s // } } fn test_log() { for i := 0; i < math.vf_.len; i++ { a := abs(math.vf_[i]) f := log(a) assert math.log_[i] == f } vflog_sc_ := [inf(-1), -pi, copysign(0, -1), 0, 1, inf(1), nan()] log_sc_ := [nan(), nan(), inf(-1), inf(-1), 0, inf(1), nan()] f := log(10) assert f == ln10 for i := 0; i < vflog_sc_.len; i++ { g := log(vflog_sc_[i]) assert alike(log_sc_[i], g) } } fn test_log10() { for i := 0; i < math.vf_.len; i++ { a := abs(math.vf_[i]) f := log10(a) assert veryclose(math.log10_[i], f) } vflog_sc_ := [inf(-1), -pi, copysign(0, -1), 0, 1, inf(1), nan()] log_sc_ := [nan(), nan(), inf(-1), inf(-1), 0, inf(1), nan()] for i := 0; i < vflog_sc_.len; i++ { f := log10(vflog_sc_[i]) assert alike(log_sc_[i], f) } } fn test_pow() { for i := 0; i < math.vf_.len; i++ { f := pow(10, math.vf_[i]) assert close(math.pow_[i], f) } vfpow_sc_ := [[inf(-1), -pi], [inf(-1), -3], [inf(-1), -0.0], [inf(-1), 0], [inf(-1), 1], [inf(-1), 3], [inf(-1), pi], [inf(-1), 0.5], [inf(-1), nan()], [-pi, inf(-1)], [-pi, -pi], [-pi, -0.0], [-pi, 0], [-pi, 1], [-pi, pi], [-pi, inf(1)], [-pi, nan()], [f64(-1), inf(-1)], [f64(-1), inf(1)], [f64(-1), nan()], [f64(-1 / 2), inf(-1)], [f64(-1 / 2), inf(1)], [f64(-0.0), inf(-1)], [f64(-0.0), -pi], [f64(-0.0), -0.5], [f64(-0.0), -3], [f64(-0.0), 3], [f64(-0.0), pi], [f64(-0.0), 0.5], [f64(-0.0), inf(1)], [f64(0), inf(-1)], [f64(0), -pi], [f64(0), -3], [f64(0), -0.0], [f64(0), 0], [f64(0), 3], [f64(0), pi], [f64(0), inf(1)], [f64(0), nan()], [f64(1 / 2), inf(-1)], [f64(1 / 2), inf(1)], [f64(1), inf(-1)], [f64(1), inf(1)], [f64(1), nan()], [pi, inf(-1)], [pi, -0.0], [pi, 0], [pi, 1], [pi, inf(1)], [pi, nan()], [inf(1), -pi], [inf(1), -0.0], [inf(1), 0], [inf(1), 1], [inf(1), pi], [inf(1), nan()], [nan(), -pi], [nan(), -0.0], [nan(), 0], [nan(), 1], [nan(), pi], [nan(), nan()]] pow_sc_ := [f64(0), /* pow(-inf, -pi) */ -0.0, /* pow(-inf, -3) */ 1, /* pow(-inf, -0) */ 1, /* pow(-inf, +0) */ inf(-1), /* pow(-inf, 1) */ inf(-1), /* pow(-inf, 3) */ inf(1), /* pow(-inf, pi) */ inf(1), /* pow(-inf, 0.5) */ nan(), /* pow(-inf, nan) */ 0, /* pow(-pi, -inf) */ nan(), /* pow(-pi, -pi) */ 1, /* pow(-pi, -0) */ 1, /* pow(-pi, +0) */ -pi, /* pow(-pi, 1) */ nan(), /* pow(-pi, pi) */ inf(1), /* pow(-pi, +inf) */ nan(), /* pow(-pi, nan) */ 1, /* pow(-1, -inf) IEEE 754-2008 */ 1, /* pow(-1, +inf) IEEE 754-2008 */ nan(), /* pow(-1, nan) */ inf(1), /* pow(-1/2, -inf) */ 0, /* pow(-1/2, +inf) */ inf(1), /* pow(-0, -inf) */ inf(1), /* pow(-0, -pi) */ inf(1), /* pow(-0, -0.5) */ inf(-1), /* pow(-0, -3) IEEE 754-2008 */ -0.0, /* pow(-0, 3) IEEE 754-2008 */ 0, /* pow(-0, pi) */ 0, /* pow(-0, 0.5) */ 0, /* pow(-0, +inf) */ inf(1), /* pow(+0, -inf) */ inf(1), /* pow(+0, -pi) */ inf(1), /* pow(+0, -3) */ 1, /* pow(+0, -0) */ 1, /* pow(+0, +0) */ 0, /* pow(+0, 3) */ 0, /* pow(+0, pi) */ 0, /* pow(+0, +inf) */ nan(), /* pow(+0, nan) */ inf(1), /* pow(1/2, -inf) */ 0, /* pow(1/2, +inf) */ 1, /* pow(1, -inf) IEEE 754-2008 */ 1, /* pow(1, +inf) IEEE 754-2008 */ 1, /* pow(1, nan) IEEE 754-2008 */ 0, /* pow(pi, -inf) */ 1, /* pow(pi, -0) */ 1, /* pow(pi, +0) */ pi, /* pow(pi, 1) */ inf(1), /* pow(pi, +inf) */ nan(), /* pow(pi, nan) */ 0, /* pow(+inf, -pi) */ 1, /* pow(+inf, -0) */ 1, /* pow(+inf, +0) */ inf(1), /* pow(+inf, 1) */ inf(1), /* pow(+inf, pi) */ nan(), /* pow(+inf, nan) */ nan(), /* pow(nan, -pi) */ 1, /* pow(nan, -0) */ 1, /* pow(nan, +0) */ nan(), /* pow(nan, 1) */ nan(), /* pow(nan, pi) */ nan(), /* pow(nan, nan) */] for i := 0; i < vfpow_sc_.len; i++ { f := pow(vfpow_sc_[i][0], vfpow_sc_[i][1]) assert alike(pow_sc_[i], f) } } fn test_round() { for i := 0; i < math.vf_.len; i++ { f := round(math.vf_[i]) // @todo: Figure out why is this happening and fix it if math.round_[i] == 0 { // 0 compared to -0 with alike fails continue } assert alike(math.round_[i], f) } vfround_sc_ := [[f64(0), 0], [nan(), nan()], [inf(1), inf(1)]] // vfround_even_sc_ := [[f64(0), 0], [f64(1.390671161567e-309), 0], /* denormal */ // [f64(0.49999999999999994), 0], /* 0.5-epsilon */ [f64(0.5), 0], // [f64(0.5000000000000001), 1], /* 0.5+epsilon */ [f64(-1.5), -2], // [f64(-2.5), -2], [nan(), nan()], [inf(1), inf(1)], // [f64(2251799813685249.5), 2251799813685250], // // 1 bit fractian [f64(2251799813685250.5), 2251799813685250], // [f64(4503599627370495.5), 4503599627370496], /* 1 bit fraction, rounding to 0 bit fractian */ // [f64(4503599627370497), 4503599627370497], /* large integer */ // ] for i := 0; i < vfround_sc_.len; i++ { f := round(vfround_sc_[i][0]) assert alike(vfround_sc_[i][1], f) } } fn fn_test_round_sig() { assert round_sig(4.3239437319748394, -1) == 4.3239437319748394 assert round_sig(4.3239437319748394, 0) == 4.0000000000000000 assert round_sig(4.3239437319748394, 1) == 4.3000000000000000 assert round_sig(4.3239437319748394, 2) == 4.3200000000000000 assert round_sig(4.3239437319748394, 3) == 4.3240000000000000 assert round_sig(4.3239437319748394, 6) == 4.3239440000000000 assert round_sig(4.3239437319748394, 12) == 4.323943731975 assert round_sig(4.3239437319748394, 17) == 4.3239437319748394 } fn test_sin() { for i := 0; i < math.vf_.len; i++ { f := sin(math.vf_[i]) assert veryclose(math.sin_[i], f) } vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()] for i := 0; i < vfsin_sc_.len; i++ { f := sin(vfsin_sc_[i]) assert alike(sin_sc_[i], f) } } fn test_sincos() { for i := 0; i < math.vf_.len; i++ { f, g := sincos(math.vf_[i]) assert veryclose(math.sin_[i], f) assert veryclose(math.cos_[i], g) } vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()] for i := 0; i < vfsin_sc_.len; i++ { f, _ := sincos(vfsin_sc_[i]) assert alike(sin_sc_[i], f) } vfcos_sc_ := [inf(-1), inf(1), nan()] cos_sc_ := [nan(), nan(), nan()] for i := 0; i < vfcos_sc_.len; i++ { _, f := sincos(vfcos_sc_[i]) assert alike(cos_sc_[i], f) } } fn test_sinh() { for i := 0; i < math.vf_.len; i++ { f := sinh(math.vf_[i]) assert close(math.sinh_[i], f) } vfsinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] sinh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfsinh_sc_.len; i++ { f := sinh(vfsinh_sc_[i]) assert alike(sinh_sc_[i], f) } } fn test_sqrt() { for i := 0; i < math.vf_.len; i++ { mut a := abs(math.vf_[i]) mut f := sqrt(a) assert veryclose(math.sqrt_[i], f) a = abs(math.vf_[i]) f = sqrt(a) assert veryclose(math.sqrt_[i], f) } vfsqrt_sc_ := [inf(-1), -pi, copysign(0, -1), 0, inf(1), nan()] sqrt_sc_ := [nan(), nan(), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfsqrt_sc_.len; i++ { mut f := sqrt(vfsqrt_sc_[i]) assert alike(sqrt_sc_[i], f) f = sqrt(vfsqrt_sc_[i]) assert alike(sqrt_sc_[i], f) } } fn test_tan() { for i := 0; i < math.vf_.len; i++ { f := tan(math.vf_[i]) assert veryclose(math.tan_[i], f) } vfsin_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] sin_sc_ := [nan(), copysign(0, -1), 0, nan(), nan()] // same special cases as sin for i := 0; i < vfsin_sc_.len; i++ { f := tan(vfsin_sc_[i]) assert alike(sin_sc_[i], f) } } fn test_tanh() { for i := 0; i < math.vf_.len; i++ { f := tanh(math.vf_[i]) assert veryclose(math.tanh_[i], f) } vftanh_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] tanh_sc_ := [f64(-1), copysign(0, -1), 0, 1, nan()] for i := 0; i < vftanh_sc_.len; i++ { f := tanh(vftanh_sc_[i]) assert alike(tanh_sc_[i], f) } } fn test_trunc() { // for i := 0; i < vf_.len; i++ { // f := trunc(vf_[i]) // assert alike(trunc_[i], f) // } vfceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] ceil_sc_ := [inf(-1), copysign(0, -1), 0, inf(1), nan()] for i := 0; i < vfceil_sc_.len; i++ { f := trunc(vfceil_sc_[i]) assert alike(ceil_sc_[i], f) } } fn test_gcd() { assert gcd(6, 9) == 3 assert gcd(6, -9) == 3 assert gcd(-6, -9) == 3 assert gcd(0, 0) == 0 } fn test_egcd() { helper := fn (a i64, b i64, expected_g i64) { g, x, y := egcd(a, b) assert g == expected_g assert abs(a * x + b * y) == g } helper(6, 9, 3) helper(6, -9, 3) helper(-6, -9, 3) helper(0, 0, 0) } fn test_lcm() { assert lcm(2, 3) == 6 assert lcm(-2, 3) == 6 assert lcm(-2, -3) == 6 assert lcm(0, 0) == 0 } fn test_digits() { // a small sanity check with a known number like 100, // just written in different base systems: assert digits(100, reverse: true) == [1, 0, 0] assert digits(100, base: 2, reverse: true) == [1, 1, 0, 0, 1, 0, 0] assert digits(100, base: 3, reverse: true) == [1, 0, 2, 0, 1] assert digits(100, base: 4, reverse: true) == [1, 2, 1, 0] assert digits(100, base: 8, reverse: true) == [1, 4, 4] assert digits(100, base: 10, reverse: true) == [1, 0, 0] assert digits(100, base: 12, reverse: true) == [8, 4] assert digits(100, base: 16, reverse: true) == [6, 4] assert digits(100, base: 20, reverse: true) == [5, 0] assert digits(100, base: 32, reverse: true) == [3, 4] assert digits(100, base: 64, reverse: true) == [1, 36] assert digits(100, base: 128, reverse: true) == [100] assert digits(100, base: 256, reverse: true) == [100] assert digits(1234432112344321) == digits(1234432112344321, reverse: true) assert digits(1234432112344321) == [1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1] assert digits(125, base: 10, reverse: true) == [1, 2, 5] assert digits(125, base: 10).reverse() == [1, 2, 5] assert digits(15, base: 16, reverse: true) == [15] assert digits(127, base: 16, reverse: true) == [7, 15] assert digits(65535, base: 16, reverse: true) == [15, 15, 15, 15] assert digits(-65535, base: 16, reverse: true) == [-15, 15, 15, 15] assert digits(-127) == [7, 2, -1] assert digits(-127).reverse() == [-1, 2, 7] assert digits(-127, reverse: true) == [-1, 2, 7] assert digits(234, base: 7).reverse() == [4, 5, 3] assert digits(67432, base: 12).reverse() == [3, 3, 0, 3, 4] } // Check that math functions of high angle values // return accurate results. [since (vf_[i] + large) - large != vf_[i], // testing for Trig(vf_[i] + large) == Trig(vf_[i]), where large is // a multiple of 2 * pi, is misleading.] fn test_large_cos() { large := 100000.0 * pi for i := 0; i < math.vf_.len; i++ { f1 := math.cos_large_[i] f2 := cos(math.vf_[i] + large) assert soclose(f1, f2, 4e-8) } } fn test_large_sin() { large := 100000.0 * pi for i := 0; i < math.vf_.len; i++ { f1 := math.sin_large_[i] f2 := sin(math.vf_[i] + large) assert soclose(f1, f2, 4e-9) } } fn test_large_tan() { large := 100000.0 * pi for i := 0; i < math.vf_.len; i++ { f1 := math.tan_large_[i] f2 := tan(math.vf_[i] + large) assert soclose(f1, f2, 4e-8) } } fn test_sqrti() { assert sqrti(i64(123456789) * i64(123456789)) == 123456789 assert sqrti(144) == 12 assert sqrti(0) == 0 } fn test_powi() { assert powi(2, 62) == i64(4611686018427387904) assert powi(0, -2) == -1 // div by 0 assert powi(2, -1) == 0 } fn test_count_digits() { assert count_digits(-999) == 3 assert count_digits(-100) == 3 assert count_digits(-99) == 2 assert count_digits(-10) == 2 assert count_digits(-1) == 1 assert count_digits(0) == 1 assert count_digits(1) == 1 assert count_digits(10) == 2 assert count_digits(99) == 2 assert count_digits(100) == 3 assert count_digits(999) == 3 // assert count_digits(12345) == 5 assert count_digits(123456789012345) == 15 assert count_digits(-67345) == 5 } fn test_min_max_int_str() { assert min_i64.str() == '-9223372036854775808' assert max_i64.str() == '9223372036854775807' assert min_i32.str() == '-2147483648' assert max_i32.str() == '2147483647' assert min_i16.str() == '-32768' assert max_i16.str() == '32767' assert min_i8.str() == '-128' assert max_i8.str() == '127' }