// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module sys import math.bits import rand.buffer import rand.seed // Implementation note: // ==================== // C.rand returns a pseudorandom integer from 0 (inclusive) to C.RAND_MAX (exclusive) // C.rand() is okay to use within its defined range. // (See: https://web.archive.org/web/20180801210127/http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx) // The problem is, this value varies with the libc implementation. On windows, // for example, RAND_MAX is usually a measly 32767, whereas on (newer) linux it's generally // 2147483647. The repetition period also varies wildly. In order to provide more entropy // without altering the underlying algorithm too much, this implementation simply // requests for more random bits until the necessary width for the integers is achieved. pub const seed_len = 1 const ( rand_limit = u64(C.RAND_MAX) rand_bitsize = bits.len_64(rand_limit) rand_bytesize = rand_bitsize / 8 u16_iter_count = calculate_iterations_for(16) u32_iter_count = calculate_iterations_for(32) u64_iter_count = calculate_iterations_for(64) ) fn calculate_iterations_for(bits_ int) int { base := bits_ / sys.rand_bitsize extra := if bits_ % sys.rand_bitsize == 0 { 0 } else { 1 } return base + extra } // SysRNG is the PRNG provided by default in the libc implementiation that V uses. pub struct SysRNG { buffer.PRNGBuffer mut: seed u32 = seed.time_seed_32() } // r.seed() sets the seed of the accepting SysRNG to the given data. pub fn (mut r SysRNG) seed(seed_data []u32) { if seed_data.len != 1 { eprintln('SysRNG needs one 32-bit unsigned integer as the seed.') exit(1) } r.seed = seed_data[0] C.srand(r.seed) } // r.default_rand() exposes the default behavior of the system's RNG // (equivalent to calling C.rand()). Recommended for testing/comparison // b/w V and other languages using libc and not for regular use. // This is also a one-off feature of SysRNG, similar to the global seed // situation. Other generators will not have this. [inline] pub fn (r SysRNG) default_rand() int { return C.rand() } // byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`. [inline] pub fn (mut r SysRNG) u8() u8 { if r.bytes_left >= 1 { r.bytes_left -= 1 value := u8(r.buffer) r.buffer >>= 8 return value } r.buffer = u64(r.default_rand()) r.bytes_left = sys.rand_bytesize - 1 value := u8(r.buffer) r.buffer >>= 8 return value } // u16 returns a uniformly distributed pseudorandom 16-bit unsigned positive `u16`. [inline] pub fn (mut r SysRNG) u16() u16 { if r.bytes_left >= 2 { r.bytes_left -= 2 value := u16(r.buffer) r.buffer >>= 16 return value } mut result := u16(C.rand()) for i in 1 .. sys.u16_iter_count { result = result ^ (u16(C.rand()) << (sys.rand_bitsize * i)) } return result } // u32 returns a uniformly distributed pseudorandom 32-bit unsigned positive `u32`. [inline] pub fn (r SysRNG) u32() u32 { mut result := u32(C.rand()) for i in 1 .. sys.u32_iter_count { result = result ^ (u32(C.rand()) << (sys.rand_bitsize * i)) } return result } // u64 returns a uniformly distributed pseudorandom 64-bit unsigned positive `u64`. [inline] pub fn (r SysRNG) u64() u64 { mut result := u64(C.rand()) for i in 1 .. sys.u64_iter_count { result = result ^ (u64(C.rand()) << (sys.rand_bitsize * i)) } return result } // block_size returns the number of bits that the RNG can produce in a single iteration. [inline] pub fn (r SysRNG) block_size() int { return sys.rand_bitsize } // free should be called when the generator is no longer needed [unsafe] pub fn (mut rng SysRNG) free() { unsafe { free(rng) } }