// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module bits const ( // See http://supertech.csail.mit.edu/papers/debruijn.pdf de_bruijn32 = u32(0x077CB531) de_bruijn32tab = [u8(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]! de_bruijn64 = u64(0x03f79d71b4ca8b09) de_bruijn64tab = [u8(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6]! ) const ( m0 = u64(0x5555555555555555) // 01010101 ... m1 = u64(0x3333333333333333) // 00110011 ... m2 = u64(0x0f0f0f0f0f0f0f0f) // 00001111 ... m3 = u64(0x00ff00ff00ff00ff) // etc. m4 = u64(0x0000ffff0000ffff) ) const ( // save importing math mod just for these max_u32 = u32(4294967295) max_u64 = u64(18446744073709551615) ) // --- LeadingZeros --- // leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0. pub fn leading_zeros_8(x u8) int { return 8 - len_8(x) } // leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0. pub fn leading_zeros_16(x u16) int { return 16 - len_16(x) } // leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0. pub fn leading_zeros_32(x u32) int { return 32 - len_32(x) } // leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0. pub fn leading_zeros_64(x u64) int { return 64 - len_64(x) } // --- TrailingZeros --- // trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0. pub fn trailing_zeros_8(x u8) int { return int(ntz_8_tab[x]) } // trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0. pub fn trailing_zeros_16(x u16) int { if x == 0 { return 16 } // see comment in trailing_zeros_64 return int(bits.de_bruijn32tab[u32(x & -x) * bits.de_bruijn32 >> (32 - 5)]) } // trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0. pub fn trailing_zeros_32(x u32) int { if x == 0 { return 32 } // see comment in trailing_zeros_64 return int(bits.de_bruijn32tab[(x & -x) * bits.de_bruijn32 >> (32 - 5)]) } // trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0. pub fn trailing_zeros_64(x u64) int { if x == 0 { return 64 } // If popcount is fast, replace code below with return popcount(^x & (x - 1)). // // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multiplying by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn (64 bit) constant // is such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) return int(bits.de_bruijn64tab[(x & -x) * bits.de_bruijn64 >> (64 - 6)]) } // --- OnesCount --- // ones_count_8 returns the number of one bits ("population count") in x. pub fn ones_count_8(x u8) int { return int(pop_8_tab[x]) } // ones_count_16 returns the number of one bits ("population count") in x. pub fn ones_count_16(x u16) int { return int(pop_8_tab[x >> 8] + pop_8_tab[x & u16(0xff)]) } // ones_count_32 returns the number of one bits ("population count") in x. pub fn ones_count_32(x u32) int { return int(pop_8_tab[x >> 24] + pop_8_tab[x >> 16 & 0xff] + pop_8_tab[x >> 8 & 0xff] + pop_8_tab[x & u32(0xff)]) } // ones_count_64 returns the number of one bits ("population count") in x. pub fn ones_count_64(x u64) int { // Implementation: Parallel summing of adjacent bits. // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // // x = x>>1&(m0&m) + x&(m0&m) // x = x>>2&(m1&m) + x&(m1&m) // x = x>>4&(m2&m) + x&(m2&m) // x = x>>8&(m3&m) + x&(m3&m) // x = x>>16&(m4&m) + x&(m4&m) // x = x>>32&(m5&m) + x&(m5&m) // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next // field: Since the result cannot be > 64, 8 bits is enough // and we can ignore the masks for the shifts by 8 and up. // Per "Hacker's Delight", the first line can be simplified // more, but it saves at best one instruction, so we leave // it alone for clarity. mut y := (x >> u64(1) & (bits.m0 & bits.max_u64)) + (x & (bits.m0 & bits.max_u64)) y = (y >> u64(2) & (bits.m1 & bits.max_u64)) + (y & (bits.m1 & bits.max_u64)) y = ((y >> 4) + y) & (bits.m2 & bits.max_u64) y += y >> 8 y += y >> 16 y += y >> 32 return int(y) & ((1 << 7) - 1) } const ( n8 = u8(8) n16 = u16(16) n32 = u32(32) n64 = u64(64) ) // --- RotateLeft --- // rotate_left_8 returns the value of x rotated left by (k mod 8) bits. // To rotate x right by k bits, call rotate_left_8(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_8(x u8, k int) u8 { s := u8(k) & (bits.n8 - u8(1)) return (x << s) | (x >> (bits.n8 - s)) } // rotate_left_16 returns the value of x rotated left by (k mod 16) bits. // To rotate x right by k bits, call rotate_left_16(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_16(x u16, k int) u16 { s := u16(k) & (bits.n16 - u16(1)) return (x << s) | (x >> (bits.n16 - s)) } // rotate_left_32 returns the value of x rotated left by (k mod 32) bits. // To rotate x right by k bits, call rotate_left_32(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_32(x u32, k int) u32 { s := u32(k) & (bits.n32 - u32(1)) return (x << s) | (x >> (bits.n32 - s)) } // rotate_left_64 returns the value of x rotated left by (k mod 64) bits. // To rotate x right by k bits, call rotate_left_64(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_64(x u64, k int) u64 { s := u64(k) & (bits.n64 - u64(1)) return (x << s) | (x >> (bits.n64 - s)) } // --- Reverse --- // reverse_8 returns the value of x with its bits in reversed order. [inline] pub fn reverse_8(x u8) u8 { return rev_8_tab[x] } // reverse_16 returns the value of x with its bits in reversed order. [inline] pub fn reverse_16(x u16) u16 { return u16(rev_8_tab[x >> 8]) | (u16(rev_8_tab[x & u16(0xff)]) << 8) } // reverse_32 returns the value of x with its bits in reversed order. [inline] pub fn reverse_32(x u32) u32 { mut y := ((x >> u32(1) & (bits.m0 & bits.max_u32)) | ((x & (bits.m0 & bits.max_u32)) << 1)) y = ((y >> u32(2) & (bits.m1 & bits.max_u32)) | ((y & (bits.m1 & bits.max_u32)) << u32(2))) y = ((y >> u32(4) & (bits.m2 & bits.max_u32)) | ((y & (bits.m2 & bits.max_u32)) << u32(4))) return reverse_bytes_32(u32(y)) } // reverse_64 returns the value of x with its bits in reversed order. [inline] pub fn reverse_64(x u64) u64 { mut y := ((x >> u64(1) & (bits.m0 & bits.max_u64)) | ((x & (bits.m0 & bits.max_u64)) << 1)) y = ((y >> u64(2) & (bits.m1 & bits.max_u64)) | ((y & (bits.m1 & bits.max_u64)) << 2)) y = ((y >> u64(4) & (bits.m2 & bits.max_u64)) | ((y & (bits.m2 & bits.max_u64)) << 4)) return reverse_bytes_64(y) } // --- ReverseBytes --- // reverse_bytes_16 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_16(x u16) u16 { return (x >> 8) | (x << 8) } // reverse_bytes_32 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_32(x u32) u32 { y := ((x >> u32(8) & (bits.m3 & bits.max_u32)) | ((x & (bits.m3 & bits.max_u32)) << u32(8))) return u32((y >> 16) | (y << 16)) } // reverse_bytes_64 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_64(x u64) u64 { mut y := ((x >> u64(8) & (bits.m3 & bits.max_u64)) | ((x & (bits.m3 & bits.max_u64)) << u64(8))) y = ((y >> u64(16) & (bits.m4 & bits.max_u64)) | ((y & (bits.m4 & bits.max_u64)) << u64(16))) return (y >> 32) | (y << 32) } // --- Len --- // len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_8(x u8) int { return int(len_8_tab[x]) } // len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_16(x u16) int { mut y := x mut n := 0 if y >= 1 << 8 { y >>= 8 n = 8 } return n + int(len_8_tab[y]) } // len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_32(x u32) int { mut y := x mut n := 0 if y >= (1 << 16) { y >>= 16 n = 16 } if y >= (1 << 8) { y >>= 8 n += 8 } return n + int(len_8_tab[y]) } // len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_64(x u64) int { mut y := x mut n := 0 if y >= u64(1) << u64(32) { y >>= 32 n = 32 } if y >= u64(1) << u64(16) { y >>= 16 n += 16 } if y >= u64(1) << u64(8) { y >>= 8 n += 8 } return n + int(len_8_tab[y]) } // --- Add with carry --- // Add returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // add_32 returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. pub fn add_32(x u32, y u32, carry u32) (u32, u32) { sum64 := u64(x) + u64(y) + u64(carry) sum := u32(sum64) carry_out := u32(sum64 >> 32) return sum, carry_out } // add_64 returns the sum with carry of x, y and carry: sum = x + y + carry. // The carry input must be 0 or 1; otherwise the behavior is undefined. // The carryOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. pub fn add_64(x u64, y u64, carry u64) (u64, u64) { sum := x + y + carry // The sum will overflow if both top bits are set (x & y) or if one of them // is (x | y), and a carry from the lower place happened. If such a carry // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). carry_out := ((x & y) | ((x | y) & ~sum)) >> 63 return sum, carry_out } // --- Subtract with borrow --- // Sub returns the difference of x, y and borrow: diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // sub_32 returns the difference of x, y and borrow, diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. pub fn sub_32(x u32, y u32, borrow u32) (u32, u32) { diff := x - y - borrow // The difference will underflow if the top bit of x is not set and the top // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow // from the lower place happens. If that borrow happens, the result will be // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 31 return diff, borrow_out } // sub_64 returns the difference of x, y and borrow: diff = x - y - borrow. // The borrow input must be 0 or 1; otherwise the behavior is undefined. // The borrowOut output is guaranteed to be 0 or 1. // // This function's execution time does not depend on the inputs. pub fn sub_64(x u64, y u64, borrow u64) (u64, u64) { diff := x - y - borrow // See Sub32 for the bit logic. borrow_out := ((~x & y) | (~(x ^ y) & diff)) >> 63 return diff, borrow_out } // --- Full-width multiply --- const ( two32 = u64(0x100000000) mask32 = two32 - 1 overflow_error = 'Overflow Error' divide_error = 'Divide Error' ) // mul_32 returns the 64-bit product of x and y: (hi, lo) = x * y // with the product bits' upper half returned in hi and the lower // half returned in lo. // // This function's execution time does not depend on the inputs. pub fn mul_32(x u32, y u32) (u32, u32) { tmp := u64(x) * u64(y) hi := u32(tmp >> 32) lo := u32(tmp) return hi, lo } // mul_64 returns the 128-bit product of x and y: (hi, lo) = x * y // with the product bits' upper half returned in hi and the lower // half returned in lo. // // This function's execution time does not depend on the inputs. pub fn mul_64(x u64, y u64) (u64, u64) { x0 := x & bits.mask32 x1 := x >> 32 y0 := y & bits.mask32 y1 := y >> 32 w0 := x0 * y0 t := x1 * y0 + (w0 >> 32) mut w1 := t & bits.mask32 w2 := t >> 32 w1 += x0 * y1 hi := x1 * y1 + w2 + (w1 >> 32) lo := x * y return hi, lo } // --- Full-width divide --- // div_32 returns the quotient and remainder of (hi, lo) divided by y: // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper // half in parameter hi and the lower half in parameter lo. // div_32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). pub fn div_32(hi u32, lo u32, y u32) (u32, u32) { if y != 0 && y <= hi { panic(bits.overflow_error) } z := (u64(hi) << 32) | u64(lo) quo := u32(z / u64(y)) rem := u32(z % u64(y)) return quo, rem } // div_64 returns the quotient and remainder of (hi, lo) divided by y: // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper // half in parameter hi and the lower half in parameter lo. // div_64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). pub fn div_64(hi u64, lo u64, y1 u64) (u64, u64) { mut y := y1 if y == 0 { panic(bits.overflow_error) } if y <= hi { panic(bits.overflow_error) } s := u32(leading_zeros_64(y)) y <<= s yn1 := y >> 32 yn0 := y & bits.mask32 ss1 := (hi << s) xxx := 64 - s mut ss2 := lo >> xxx if xxx == 64 { // in Go, shifting right a u64 number, 64 times produces 0 *always*. // See https://go.dev/ref/spec // > The shift operators implement arithmetic shifts if the left operand // > is a signed integer and logical shifts if it is an unsigned integer. // > There is no upper limit on the shift count. // > Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. // > As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 // > but truncated towards negative infinity. // // In V, that is currently left to whatever C is doing, which is apparently a NOP. // This function was a direct port of https://cs.opensource.google/go/go/+/refs/tags/go1.17.6:src/math/bits/bits.go;l=512, // so we have to use the Go behaviour. // TODO: reconsider whether we need to adopt it for our shift ops, or just use function wrappers that do it. ss2 = 0 } un32 := ss1 | ss2 un10 := lo << s un1 := un10 >> 32 un0 := un10 & bits.mask32 mut q1 := un32 / yn1 mut rhat := un32 - (q1 * yn1) for q1 >= bits.two32 || (q1 * yn0) > ((bits.two32 * rhat) + un1) { q1-- rhat += yn1 if rhat >= bits.two32 { break } } un21 := (un32 * bits.two32) + (un1 - (q1 * y)) mut q0 := un21 / yn1 rhat = un21 - q0 * yn1 for q0 >= bits.two32 || (q0 * yn0) > ((bits.two32 * rhat) + un0) { q0-- rhat += yn1 if rhat >= bits.two32 { break } } qq := ((q1 * bits.two32) + q0) rr := ((un21 * bits.two32) + un0 - (q0 * y)) >> s return qq, rr } // rem_32 returns the remainder of (hi, lo) divided by y. Rem32 panics // for y == 0 (division by zero) but, unlike Div32, it doesn't panic // on a quotient overflow. pub fn rem_32(hi u32, lo u32, y u32) u32 { return u32(((u64(hi) << 32) | u64(lo)) % u64(y)) } // rem_64 returns the remainder of (hi, lo) divided by y. Rem64 panics // for y == 0 (division by zero) but, unlike div_64, it doesn't panic // on a quotient overflow. pub fn rem_64(hi u64, lo u64, y u64) u64 { // We scale down hi so that hi < y, then use div_64 to compute the // rem with the guarantee that it won't panic on quotient overflow. // Given that // hi ≡ hi%y (mod y) // we have // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) _, rem := div_64(hi % y, lo, y) return rem } // normalize returns a normal number y and exponent exp // satisfying x == y × 2**exp. It assumes x is finite and non-zero. pub fn normalize(x f64) (f64, int) { smallest_normal := 2.2250738585072014e-308 // 2**-1022 if (if x > 0.0 { x } else { -x }) < smallest_normal { return x * (u64(1) << u64(52)), -52 } return x, 0 }