import gg import gx import math import os import rand import time struct App { mut: gg &gg.Context = unsafe { 0 } touch TouchInfo ui Ui theme &Theme = themes[0] theme_idx int board Board undo []Undo atickers [4][4]int state GameState = .play tile_format TileFormat = .normal moves int perf &Perf = unsafe { 0 } is_ai_mode bool } struct Ui { mut: dpi_scale f32 tile_size int border_size int padding_size int header_size int font_size int window_width int window_height int x_padding int y_padding int } struct Theme { bg_color gx.Color padding_color gx.Color text_color gx.Color game_over_color gx.Color victory_color gx.Color tile_colors []gx.Color } const ( themes = [ &Theme{ bg_color: gx.rgb(250, 248, 239) padding_color: gx.rgb(143, 130, 119) victory_color: gx.rgb(100, 160, 100) game_over_color: gx.rgb(190, 50, 50) text_color: gx.black tile_colors: [ gx.rgb(205, 193, 180), /* Empty / 0 tile */ gx.rgb(238, 228, 218), /* 2 */ gx.rgb(237, 224, 200), /* 4 */ gx.rgb(242, 177, 121), /* 8 */ gx.rgb(245, 149, 99), /* 16 */ gx.rgb(246, 124, 95), /* 32 */ gx.rgb(246, 94, 59), /* 64 */ gx.rgb(237, 207, 114), /* 128 */ gx.rgb(237, 204, 97), /* 256 */ gx.rgb(237, 200, 80), /* 512 */ gx.rgb(237, 197, 63), /* 1024 */ gx.rgb(237, 194, 46), ] }, &Theme{ bg_color: gx.rgb(55, 55, 55) padding_color: gx.rgb(68, 60, 59) victory_color: gx.rgb(100, 160, 100) game_over_color: gx.rgb(190, 50, 50) text_color: gx.white tile_colors: [ gx.rgb(123, 115, 108), gx.rgb(142, 136, 130), gx.rgb(142, 134, 120), gx.rgb(145, 106, 72), gx.rgb(147, 89, 59), gx.rgb(147, 74, 57), gx.rgb(147, 56, 35), gx.rgb(142, 124, 68), gx.rgb(142, 122, 58), gx.rgb(142, 120, 48), gx.rgb(142, 118, 37), gx.rgb(142, 116, 27), ] }, &Theme{ bg_color: gx.rgb(38, 38, 66) padding_color: gx.rgb(58, 50, 74) victory_color: gx.rgb(100, 160, 100) game_over_color: gx.rgb(190, 50, 50) text_color: gx.white tile_colors: [ gx.rgb(92, 86, 140), gx.rgb(106, 99, 169), gx.rgb(106, 97, 156), gx.rgb(108, 79, 93), gx.rgb(110, 66, 76), gx.rgb(110, 55, 74), gx.rgb(110, 42, 45), gx.rgb(106, 93, 88), gx.rgb(106, 91, 75), gx.rgb(106, 90, 62), gx.rgb(106, 88, 48), gx.rgb(106, 87, 35), ] }, ] window_title = 'V 2048' default_window_width = 544 default_window_height = 560 animation_length = 10 // frames frames_per_ai_move = 8 possible_moves = [Direction.up, .right, .down, .left] predictions_per_move = 200 prediction_depth = 8 ) // Used for performance monitoring when `-d showfps` is passed, unused / optimized out otherwise struct Perf { mut: frame int frame_old int frame_sw time.StopWatch = time.new_stopwatch() second_sw time.StopWatch = time.new_stopwatch() } struct Pos { x int = -1 y int = -1 } struct Board { mut: field [4][4]int points int shifts int } struct Undo { board Board state GameState } struct TileLine { ypos int mut: field [5]int points int shifts int } struct TouchInfo { mut: start Touch end Touch } struct Touch { mut: pos Pos time time.Time } enum TileFormat { normal log exponent shifts none_ end_ // To know when to wrap around } enum GameState { play over victory freeplay } enum LabelKind { points moves tile victory game_over score_end } enum Direction { up down left right } // Utility functions [inline] fn avg(a int, b int) int { return (a + b) / 2 } fn (b Board) transpose() Board { mut res := b for y in 0 .. 4 { for x in 0 .. 4 { res.field[y][x] = b.field[x][y] } } return res } fn (b Board) hmirror() Board { mut res := b for y in 0 .. 4 { for x in 0 .. 4 { res.field[y][x] = b.field[y][3 - x] } } return res } fn (t TileLine) to_left() TileLine { right_border_idx := 4 mut res := t mut zeros := 0 mut nonzeros := 0 // gather meta info about the line: for x in res.field { if x == 0 { zeros++ } else { nonzeros++ } } if nonzeros == 0 { // when all the tiles are empty, there is nothing left to do return res } if zeros > 0 { // we have some 0s, do shifts to compact them: mut remaining_zeros := zeros for x := 0; x < right_border_idx - 1; x++ { for res.field[x] == 0 && remaining_zeros > 0 { res.shifts++ for k := x; k < right_border_idx; k++ { res.field[k] = res.field[k + 1] } remaining_zeros-- } } } // At this point, the non 0 tiles are all on the left, with no empty spaces // between them. we can safely merge them, when they have the same value: for x := 0; x < right_border_idx - 1; x++ { if res.field[x] == 0 { break } if res.field[x] == res.field[x + 1] { for k := x; k < right_border_idx; k++ { res.field[k] = res.field[k + 1] } res.shifts++ res.field[x]++ res.points += 1 << res.field[x] } } return res } fn (b Board) to_left() Board { mut res := b for y in 0 .. 4 { mut hline := TileLine{ ypos: y } for x in 0 .. 4 { hline.field[x] = b.field[y][x] } reshline := hline.to_left() res.shifts += reshline.shifts res.points += reshline.points for x in 0 .. 4 { res.field[y][x] = reshline.field[x] } } return res } fn (b Board) move(d Direction) (Board, bool) { new := match d { .left { b.to_left() } .right { b.hmirror().to_left().hmirror() } .up { b.transpose().to_left().transpose() } .down { b.transpose().hmirror().to_left().hmirror().transpose() } } // If the board hasn't changed, it's an illegal move, don't allow it. for x in 0 .. 4 { for y in 0 .. 4 { if b.field[x][y] != new.field[x][y] { return new, true } } } return new, false } fn (mut b Board) is_game_over() bool { for y in 0 .. 4 { for x in 0 .. 4 { fidx := b.field[y][x] if fidx == 0 { // there are remaining zeros return false } if (x > 0 && fidx == b.field[y][x - 1]) || (x < 4 - 1 && fidx == b.field[y][x + 1]) || (y > 0 && fidx == b.field[y - 1][x]) || (y < 4 - 1 && fidx == b.field[y + 1][x]) { // there are remaining merges return false } } } return true } fn (mut app App) update_tickers() { for y in 0 .. 4 { for x in 0 .. 4 { mut old := app.atickers[y][x] if old > 0 { old-- app.atickers[y][x] = old } } } } fn (mut app App) new_game() { app.board = Board{} for y in 0 .. 4 { for x in 0 .. 4 { app.board.field[y][x] = 0 app.atickers[y][x] = 0 } } app.state = .play app.undo = []Undo{cap: 4096} app.moves = 0 app.new_random_tile() app.new_random_tile() } [inline] fn (mut app App) check_for_victory() { for y in 0 .. 4 { for x in 0 .. 4 { fidx := app.board.field[y][x] if fidx == 11 { app.state = .victory return } } } } [inline] fn (mut app App) check_for_game_over() { if app.board.is_game_over() { app.state = .over } } fn (mut b Board) place_random_tile() (Pos, int) { mut etiles := [16]Pos{} mut empty_tiles_max := 0 for y in 0 .. 4 { for x in 0 .. 4 { fidx := b.field[y][x] if fidx == 0 { etiles[empty_tiles_max] = Pos{x, y} empty_tiles_max++ } } } if empty_tiles_max > 0 { new_random_tile_index := rand.intn(empty_tiles_max) or { 0 } empty_pos := etiles[new_random_tile_index] // 10% chance of getting a `4` tile value := rand.f64n(1.0) or { 0.0 } random_value := if value < 0.9 { 1 } else { 2 } b.field[empty_pos.y][empty_pos.x] = random_value return empty_pos, random_value } return Pos{}, 0 } fn (mut app App) new_random_tile() { for y in 0 .. 4 { for x in 0 .. 4 { fidx := app.board.field[y][x] if fidx == 0 { app.atickers[y][x] = 0 } } } empty_pos, random_value := app.board.place_random_tile() if random_value > 0 { app.atickers[empty_pos.y][empty_pos.x] = animation_length } if app.state != .freeplay { app.check_for_victory() } app.check_for_game_over() } fn (mut app App) apply_new_board(new Board) { old := app.board app.moves++ app.board = new app.undo << Undo{old, app.state} app.new_random_tile() } fn (mut app App) move(d Direction) { new, is_valid := app.board.move(d) if !is_valid { return } app.apply_new_board(new) } struct Prediction { mut: move Direction mpoints f64 mcmoves f64 } fn (p Prediction) str() string { return '{ move: ${p.move:5}, mpoints: ${p.mpoints:6.2f}, mcmoves: ${p.mcmoves:6.2f} }' } fn (mut app App) ai_move() { mut predictions := [4]Prediction{} mut is_valid := false think_watch := time.new_stopwatch() for move in possible_moves { move_idx := int(move) predictions[move_idx].move = move mut mpoints := 0 mut mcmoves := 0 for _ in 0 .. predictions_per_move { mut cboard := app.board cboard, is_valid = cboard.move(move) if !is_valid || cboard.is_game_over() { continue } mpoints += cboard.points cboard.place_random_tile() mut cmoves := 0 for !cboard.is_game_over() { nmove := possible_moves[rand.intn(possible_moves.len) or { 0 }] cboard, is_valid = cboard.move(nmove) if !is_valid { continue } cboard.place_random_tile() cmoves++ if cmoves > prediction_depth { break } } mpoints += cboard.points mcmoves += cmoves } predictions[move_idx].mpoints = f64(mpoints) / predictions_per_move predictions[move_idx].mcmoves = f64(mcmoves) / predictions_per_move } think_time := think_watch.elapsed().milliseconds() mut bestprediction := Prediction{ mpoints: -1 } for move_idx in 0 .. possible_moves.len { if bestprediction.mpoints < predictions[move_idx].mpoints { bestprediction = predictions[move_idx] } } eprintln('Simulation time: ${think_time:4}ms | best $bestprediction') app.move(bestprediction.move) } fn (app &App) label_format(kind LabelKind) gx.TextCfg { match kind { .points { return gx.TextCfg{ color: if app.state in [.over, .victory] { gx.white } else { app.theme.text_color } align: .left size: app.ui.font_size / 2 } } .moves { return gx.TextCfg{ color: if app.state in [.over, .victory] { gx.white } else { app.theme.text_color } align: .right size: app.ui.font_size / 2 } } .tile { return gx.TextCfg{ color: app.theme.text_color align: .center vertical_align: .middle size: app.ui.font_size } } .victory { return gx.TextCfg{ color: app.theme.victory_color align: .center vertical_align: .middle size: app.ui.font_size * 2 } } .game_over { return gx.TextCfg{ color: app.theme.game_over_color align: .center vertical_align: .middle size: app.ui.font_size * 2 } } .score_end { return gx.TextCfg{ color: gx.white align: .center vertical_align: .middle size: app.ui.font_size * 3 / 4 } } } } [inline] fn (mut app App) set_theme(idx int) { theme := themes[idx] app.theme_idx = idx app.theme = theme app.gg.set_bg_color(theme.bg_color) } fn (mut app App) resize() { mut s := app.gg.scale if s == 0.0 { s = 1.0 } window_size := app.gg.window_size() w := window_size.width h := window_size.height m := f32(math.min(w, h)) app.ui.dpi_scale = s app.ui.window_width = w app.ui.window_height = h app.ui.padding_size = int(m / 38) app.ui.header_size = app.ui.padding_size app.ui.border_size = app.ui.padding_size * 2 app.ui.tile_size = int((m - app.ui.padding_size * 5 - app.ui.border_size * 2) / 4) app.ui.font_size = int(m / 10) // If the window's height is greater than its width, center the board vertically. // If not, center it horizontally if w > h { app.ui.y_padding = 0 app.ui.x_padding = (app.ui.window_width - app.ui.window_height) / 2 } else { app.ui.y_padding = (app.ui.window_height - app.ui.window_width - app.ui.header_size) / 2 app.ui.x_padding = 0 } } fn (app &App) draw() { xpad, ypad := app.ui.x_padding, app.ui.y_padding ww := app.ui.window_width wh := app.ui.window_height m := math.min(ww, wh) labelx := xpad + app.ui.border_size labely := ypad + app.ui.border_size / 2 app.draw_tiles() // TODO: Make transparency work in `gg` if app.state == .over { app.gg.draw_rect_filled(0, 0, ww, wh, gx.rgba(10, 0, 0, 180)) app.gg.draw_text(ww / 2, (m * 4 / 10) + ypad, 'Game Over', app.label_format(.game_over)) f := app.label_format(.tile) msg := $if android { 'Tap to restart' } $else { 'Press `r` to restart' } app.gg.draw_text(ww / 2, (m * 6 / 10) + ypad, msg, gx.TextCfg{ ...f color: gx.white size: f.size * 3 / 4 }) } if app.state == .victory { app.gg.draw_rect_filled(0, 0, ww, wh, gx.rgba(0, 10, 0, 180)) app.gg.draw_text(ww / 2, (m * 4 / 10) + ypad, 'Victory!', app.label_format(.victory)) // f := app.label_format(.tile) msg1 := $if android { 'Tap to continue' } $else { 'Press `space` to continue' } msg2 := $if android { 'Tap to restart' } $else { 'Press `r` to restart' } app.gg.draw_text(ww / 2, (m * 6 / 10) + ypad, msg1, app.label_format(.score_end)) app.gg.draw_text(ww / 2, (m * 8 / 10) + ypad, msg2, app.label_format(.score_end)) } // Draw at the end, so that it's on top of the victory / game over overlays app.gg.draw_text(labelx, labely, 'Points: $app.board.points', app.label_format(.points)) app.gg.draw_text(ww - labelx, labely, 'Moves: $app.moves', app.label_format(.moves)) } fn (app &App) draw_tiles() { xstart := app.ui.x_padding + app.ui.border_size ystart := app.ui.y_padding + app.ui.border_size + app.ui.header_size toffset := app.ui.tile_size + app.ui.padding_size tiles_size := math.min(app.ui.window_width, app.ui.window_height) - app.ui.border_size * 2 // Draw the padding around the tiles app.gg.draw_rounded_rect_filled(xstart, ystart, tiles_size, tiles_size, tiles_size / 24, app.theme.padding_color) // Draw the actual tiles for y in 0 .. 4 { for x in 0 .. 4 { tidx := app.board.field[y][x] tile_color := if tidx < app.theme.tile_colors.len { app.theme.tile_colors[tidx] } else { // If there isn't a specific color for this tile, reuse the last color available app.theme.tile_colors.last() } anim_size := animation_length - app.atickers[y][x] tw := int(f64(app.ui.tile_size) / animation_length * anim_size) th := tw // square tiles, w == h xoffset := xstart + app.ui.padding_size + x * toffset + (app.ui.tile_size - tw) / 2 yoffset := ystart + app.ui.padding_size + y * toffset + (app.ui.tile_size - th) / 2 app.gg.draw_rounded_rect_filled(xoffset, yoffset, tw, th, tw / 8, tile_color) if tidx != 0 { // 0 == blank spot xpos := xoffset + tw / 2 ypos := yoffset + th / 2 mut fmt := app.label_format(.tile) fmt = gx.TextCfg{ ...fmt size: int(f32(fmt.size - 1) / animation_length * anim_size) } match app.tile_format { .normal { app.gg.draw_text(xpos, ypos, '${1 << tidx}', fmt) } .log { app.gg.draw_text(xpos, ypos, '$tidx', fmt) } .exponent { app.gg.draw_text(xpos, ypos, '2', fmt) fs2 := int(f32(fmt.size) * 0.67) app.gg.draw_text(xpos + app.ui.tile_size / 10, ypos - app.ui.tile_size / 8, '$tidx', gx.TextCfg{ ...fmt size: fs2 align: gx.HorizontalAlign.left }) } .shifts { fs2 := int(f32(fmt.size) * 0.6) app.gg.draw_text(xpos, ypos, '2<<${tidx - 1}', gx.TextCfg{ ...fmt size: fs2 }) } .none_ {} // Don't draw any text here, colors only .end_ {} // Should never get here } } } } } fn (mut app App) handle_touches() { s, e := app.touch.start, app.touch.end adx, ady := math.abs(e.pos.x - s.pos.x), math.abs(e.pos.y - s.pos.y) if math.max(adx, ady) < 10 { app.handle_tap() } else { app.handle_swipe() } } fn (mut app App) handle_tap() { _, ypad := app.ui.x_padding, app.ui.y_padding w, h := app.ui.window_width, app.ui.window_height m := math.min(w, h) s, e := app.touch.start, app.touch.end avgx, avgy := avg(s.pos.x, e.pos.x), avg(s.pos.y, e.pos.y) // TODO: Replace "touch spots" with actual buttons // bottom left -> change theme if avgx < 50 && h - avgy < 50 { app.next_theme() } // bottom right -> change tile format if w - avgx < 50 && h - avgy < 50 { app.next_tile_format() } if app.state == .victory { if avgy > (m / 2) + ypad { if avgy < (m * 7 / 10) + ypad { app.state = .freeplay } else if avgy < (m * 9 / 10) + ypad { app.new_game() } else { // TODO remove and implement an actual way to toggle themes on mobile } } } else if app.state == .over { if avgy > (m / 2) + ypad && avgy < (m * 7 / 10) + ypad { app.new_game() } } } fn (mut app App) handle_swipe() { // Currently, swipes are only used to move the tiles. // If the user's not playing, exit early to avoid all the unnecessary calculations if app.state !in [.play, .freeplay] { return } s, e := app.touch.start, app.touch.end w, h := app.ui.window_width, app.ui.window_height dx, dy := e.pos.x - s.pos.x, e.pos.y - s.pos.y adx, ady := math.abs(dx), math.abs(dy) dmin := if math.min(adx, ady) > 0 { math.min(adx, ady) } else { 1 } dmax := if math.max(adx, ady) > 0 { math.max(adx, ady) } else { 1 } tdiff := int(e.time.unix_time_milli() - s.time.unix_time_milli()) // TODO: make this calculation more accurate (don't use arbitrary numbers) min_swipe_distance := int(math.sqrt(math.min(w, h) * tdiff / 100)) + 20 if dmax < min_swipe_distance { return } // Swipe was too short if dmax / dmin < 2 { return } // Swiped diagonally if adx > ady { if dx < 0 { app.move(.left) } else { app.move(.right) } } else { if dy < 0 { app.move(.up) } else { app.move(.down) } } } [inline] fn (mut app App) next_theme() { app.set_theme(if app.theme_idx == themes.len - 1 { 0 } else { app.theme_idx + 1 }) } [inline] fn (mut app App) next_tile_format() { app.tile_format = TileFormat(int(app.tile_format) + 1) if app.tile_format == .end_ { app.tile_format = .normal } } [inline] fn (mut app App) undo() { if app.undo.len > 0 { undo := app.undo.pop() app.board = undo.board app.state = undo.state app.moves-- } } fn (mut app App) on_key_down(key gg.KeyCode) { // these keys are independent from the game state: match key { .c { app.is_ai_mode = !app.is_ai_mode } .escape { app.gg.quit() } .n, .r { app.new_game() } .backspace { app.undo() } .enter { app.next_tile_format() } .j { app.state = .over } .t { app.next_theme() } else {} } if app.state in [.play, .freeplay] { if !app.is_ai_mode { match key { .w, .up { app.move(.up) } .a, .left { app.move(.left) } .s, .down { app.move(.down) } .d, .right { app.move(.right) } else {} } } } if app.state == .victory { if key == .space { app.state = .freeplay } } } fn on_event(e &gg.Event, mut app App) { match e.typ { .key_down { app.on_key_down(e.key_code) } .resized, .restored, .resumed { app.resize() } .touches_began { if e.num_touches > 0 { t := e.touches[0] app.touch.start = Touch{ pos: Pos{ x: int(t.pos_x / app.ui.dpi_scale) y: int(t.pos_y / app.ui.dpi_scale) } time: time.now() } } } .touches_ended { if e.num_touches > 0 { t := e.touches[0] app.touch.end = Touch{ pos: Pos{ x: int(t.pos_x / app.ui.dpi_scale) y: int(t.pos_y / app.ui.dpi_scale) } time: time.now() } app.handle_touches() } } .mouse_down { app.touch.start = Touch{ pos: Pos{ x: int(e.mouse_x / app.ui.dpi_scale) y: int(e.mouse_y / app.ui.dpi_scale) } time: time.now() } } .mouse_up { app.touch.end = Touch{ pos: Pos{ x: int(e.mouse_x / app.ui.dpi_scale) y: int(e.mouse_y / app.ui.dpi_scale) } time: time.now() } app.handle_touches() } else {} } } fn frame(mut app App) { $if showfps ? { app.perf.frame_sw.restart() } app.gg.begin() app.update_tickers() app.draw() app.perf.frame++ if app.is_ai_mode && app.state in [.play, .freeplay] && app.perf.frame % frames_per_ai_move == 0 { app.ai_move() } $if showfps ? { app.showfps() } app.gg.end() } fn init(mut app App) { app.resize() $if showfps ? { app.perf.frame_sw.restart() app.perf.second_sw.restart() } } fn (mut app App) showfps() { println(app.perf.frame_sw.elapsed().microseconds()) f := app.perf.frame if (f & 127) == 0 { last_frame_us := app.perf.frame_sw.elapsed().microseconds() ticks := f64(app.perf.second_sw.elapsed().milliseconds()) fps := f64(app.perf.frame - app.perf.frame_old) * ticks / 1000 / 4.5 last_fps := 128000.0 / ticks eprintln('frame ${f:-5} | avg. fps: ${fps:-5.1f} | avg. last 128 fps: ${last_fps:-5.1f} | last frame time: ${last_frame_us:-4}µs') app.perf.second_sw.restart() app.perf.frame_old = f } } fn main() { mut app := &App{} app.new_game() mut font_path := os.resource_abs_path(os.join_path('..', 'assets', 'fonts', 'RobotoMono-Regular.ttf')) $if android { font_path = 'fonts/RobotoMono-Regular.ttf' } mut window_title_ := 'V 2048' // TODO: Make emcc a real platform ifdef $if emscripten ? { // in emscripten, sokol uses `window_title` as the selector to the canvas it'll render to, // and since `document.querySelector('V 2048')` isn't valid JS, we use `canvas` instead window_title_ = 'canvas' } app.perf = &Perf{} app.gg = gg.new_context( bg_color: app.theme.bg_color width: default_window_width height: default_window_height sample_count: 4 // higher quality curves create_window: true window_title: window_title_ frame_fn: frame event_fn: on_event init_fn: init user_data: app font_path: font_path ) app.gg.run() }