// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module musl import math.bits import rand.util // Ported from https://git.musl-libc.org/cgit/musl/tree/src/prng/rand_r.c pub struct MuslRNG { mut: state u32 = util.time_seed_32() } pub fn (mut rng MuslRNG) seed(seed_data []u32) { if seed_data.len != 1 { eprintln('MuslRNG needs only one unsigned 32 bit integer as a seed.') exit(1) } rng.state = seed_data[0] } [inline] fn temper(prev u32) u32 { mut x := prev x ^= x >> 11 x ^= (x << 7) & 0x9D2C5680 x ^= (x << 15) & 0xEFC60000 x ^= (x >> 18) return x } // rng.u32() - return a pseudorandom 32 bit unsigned u32 [inline] pub fn (mut rng MuslRNG) u32() u32 { rng.state = rng.state * 1103515245 + 12345 // We are not dividing by 2 (or shifting right by 1) // because we want all 32-bits of random data return temper(rng.state) } // rng.u64() - return a pseudorandom 64 bit unsigned u64 [inline] pub fn (mut rng MuslRNG) u64() u64 { return u64(rng.u32()) | (u64(rng.u32()) << 32) } // rn.u32n(max) - return a pseudorandom 32 bit unsigned u32 in [0, max) [inline] pub fn (mut rng MuslRNG) u32n(max u32) u32 { if max == 0 { eprintln('max must be positive integer') exit(1) } // Check SysRNG in system_rng.c.v for explanation bit_len := bits.len_32(max) if bit_len == 32 { for { value := rng.u32() if value < max { return value } } } else { mask := (u32(1) << (bit_len + 1)) - 1 for { value := rng.u32() & mask if value < max { return value } } } return u32(0) } // rn.u64n(max) - return a pseudorandom 64 bit unsigned u64 in [0, max) [inline] pub fn (mut rng MuslRNG) u64n(max u64) u64 { if max == 0 { eprintln('max must be positive integer') exit(1) } bit_len := bits.len_64(max) if bit_len == 64 { for { value := rng.u64() if value < max { return value } } } else { mask := (u64(1) << (bit_len + 1)) - 1 for { value := rng.u64() & mask if value < max { return value } } } return u64(0) } // rn.u32_in_range(min, max) - return a pseudorandom 32 bit unsigned u32 in [min, max) [inline] pub fn (mut rng MuslRNG) u32_in_range(min u64, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u32n(u32(max - min)) } // rn.u64_in_range(min, max) - return a pseudorandom 64 bit unsigned u64 in [min, max) [inline] pub fn (mut rng MuslRNG) u64_in_range(min u64, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u64n(max - min) } // rng.int() - return a 32-bit signed (possibly negative) int [inline] pub fn (mut rng MuslRNG) int() int { return int(rng.u32()) } // rng.i64() - return a 64-bit signed (possibly negative) i64 [inline] pub fn (mut rng MuslRNG) i64() i64 { return i64(rng.u64()) } // rng.int31() - return a 31bit positive pseudorandom integer [inline] pub fn (mut rng MuslRNG) int31() int { return int(rng.u32() >> 1) } // rng.int63() - return a 63bit positive pseudorandom integer [inline] pub fn (mut rng MuslRNG) int63() i64 { return i64(rng.u64() >> 1) } // rng.intn(max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng MuslRNG) intn(max int) int { if max <= 0 { eprintln('max has to be positive.') exit(1) } return int(rng.u32n(u32(max))) } // rng.i64n(max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng MuslRNG) i64n(max i64) i64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return i64(rng.u64n(u64(max))) } // rng.int_in_range(min, max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng MuslRNG) int_in_range(min int, max int) int { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.intn(max - min) } // rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng MuslRNG) i64_in_range(min i64, max i64) i64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.i64n(max - min) } // rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (mut rng MuslRNG) f32() f32 { return f32(rng.u32()) / util.max_u32_as_f32 } // rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (mut rng MuslRNG) f64() f64 { return f64(rng.u64()) / util.max_u64_as_f64 } // rng.f32n() returns a pseudorandom f32 value in [0, max) [inline] pub fn (mut rng MuslRNG) f32n(max f32) f32 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f32() * max } // rng.f64n() returns a pseudorandom f64 value in [0, max) [inline] pub fn (mut rng MuslRNG) f64n(max f64) f64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f64() * max } // rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max) [inline] pub fn (mut rng MuslRNG) f32_in_range(min f32, max f32) f32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f32n(max - min) } // rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) [inline] pub fn (mut rng MuslRNG) f64_in_range(min f64, max f64) f64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f64n(max - min) }