// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module mt19937 import math.bits import rand.util /* C++ functions for MT19937, with initialization improved 2002/2/10. Coded by Takuji Nishimura and Makoto Matsumoto. This is a faster version by taking Shawn Cokus's optimization, Matthe Bellew's simplification, Isaku Wada's real version. Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ const ( nn = 312 mm = 156 matrix_a = 0xB5026F5AA96619E9 um = 0xFFFFFFFF80000000 lm = 0x7FFFFFFF inv_f64_limit = 1.0 / 9007199254740992.0 ) // A generator that uses the Mersenne Twister algorithm with period 2^19937 pub struct MT19937RNG { mut: state []u64 = calculate_state(util.time_seed_array(2), mut []u64{len: nn}) mti int = nn next_rnd u32 has_next bool } fn calculate_state(seed_data []u32, mut state []u64) []u64 { lo := u64(seed_data[0]) hi := u64(seed_data[1]) state[0] = u64((hi << 32) | lo) for j := 1; j < nn; j++ { state[j] = u64(6364136223846793005) * (state[j - 1] ^ (state[j - 1] >> 62)) + u64(j) } return *state } // seed() - Set the seed, needs only two u32s in little endian format as [lower, higher] pub fn (mut rng MT19937RNG) seed(seed_data []u32) { if seed_data.len != 2 { eprintln('mt19937 needs only two 32bit integers as seed: [lower, higher]') exit(1) } rng.state = calculate_state(seed_data, mut rng.state) rng.mti = nn rng.next_rnd = 0 rng.has_next = false } // rng.u32() - return a pseudorandom 32bit int in [0, 2**32) [inline] pub fn (mut rng MT19937RNG) u32() u32 { if rng.has_next { rng.has_next = false return rng.next_rnd } ans := rng.u64() rng.next_rnd = u32(ans >> 32) rng.has_next = true return u32(ans & 0xffffffff) } // rng.u64() - return a pseudorandom 64bit int in [0, 2**64) [inline] pub fn (mut rng MT19937RNG) u64() u64 { mag01 := [u64(0), u64(matrix_a)] mut x := u64(0) mut i := int(0) if rng.mti >= nn { for i = 0; i < nn - mm; i++ { x = (rng.state[i] & um) | (rng.state[i + 1] & lm) rng.state[i] = rng.state[i + mm] ^ (x >> 1) ^ mag01[int(x & 1)] } for i < nn - 1 { x = (rng.state[i] & um) | (rng.state[i + 1] & lm) rng.state[i] = rng.state[i + (mm - nn)] ^ (x >> 1) ^ mag01[int(x & 1)] i++ } x = (rng.state[nn - 1] & um) | (rng.state[0] & lm) rng.state[nn - 1] = rng.state[mm - 1] ^ (x >> 1) ^ mag01[int(x & 1)] rng.mti = 0 } x = rng.state[rng.mti] rng.mti++ x ^= (x >> 29) & 0x5555555555555555 x ^= (x << 17) & 0x71D67FFFEDA60000 x ^= (x << 37) & 0xFFF7EEE000000000 x ^= (x >> 43) return x } // rng.int() - return a 32-bit signed (possibly negative) int [inline] pub fn (mut rng MT19937RNG) int() int { return int(rng.u32()) } // rng.i64() - return a 64-bit signed (possibly negative) i64 [inline] pub fn (mut rng MT19937RNG) i64() i64 { return i64(rng.u64()) } // rng.int31() - return a 31bit positive pseudorandom integer [inline] pub fn (mut rng MT19937RNG) int31() int { return int(rng.u32() >> 1) } // rng.int63() - return a 63bit positive pseudorandom integer [inline] pub fn (mut rng MT19937RNG) int63() i64 { return i64(rng.u64() >> 1) } // rng.u32n(max) - return a 32bit u32 in [0, max) [inline] pub fn (mut rng MT19937RNG) u32n(max u32) u32 { if max == 0 { eprintln('max must be positive integer') exit(1) } // Check SysRNG in system_rng.c.v for explanation bit_len := bits.len_32(max) if bit_len == 32 { for { value := rng.u32() if value < max { return value } } } else { mask := (u32(1) << (bit_len + 1)) - 1 for { value := rng.u32() & mask if value < max { return value } } } return u32(0) } // rng.u64n(max) - return a 64bit u64 in [0, max) [inline] pub fn (mut rng MT19937RNG) u64n(max u64) u64 { if max == 0 { eprintln('max must be positive integer') exit(1) } bit_len := bits.len_64(max) if bit_len == 64 { for { value := rng.u64() if value < max { return value } } } else { mask := (u64(1) << (bit_len + 1)) - 1 for { value := rng.u64() & mask if value < max { return value } } } return u64(0) } // rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max) [inline] pub fn (mut rng MT19937RNG) u32_in_range(min u32, max u32) u32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u32n(max - min) } // rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max) [inline] pub fn (mut rng MT19937RNG) u64_in_range(min u64, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u64n(max - min) } // rng.intn(max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng MT19937RNG) intn(max int) int { if max <= 0 { eprintln('max has to be positive.') exit(1) } return int(rng.u32n(u32(max))) } // rng.i64n(max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng MT19937RNG) i64n(max i64) i64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return i64(rng.u64n(u64(max))) } // rng.int_in_range(min, max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng MT19937RNG) int_in_range(min int, max int) int { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.intn(max - min) } // rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng MT19937RNG) i64_in_range(min i64, max i64) i64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.i64n(max - min) } // rng.f32() - return a 32bit real in [0, 1) [inline] pub fn (mut rng MT19937RNG) f32() f32 { return f32(rng.f64()) } // rng.f64() - return 64bit real in [0, 1) [inline] pub fn (mut rng MT19937RNG) f64() f64 { return f64(rng.u64() >> 11) * inv_f64_limit } // rng.f32n(max) - return 64bit real in [0, max) [inline] pub fn (mut rng MT19937RNG) f32n(max f32) f32 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f32() * max } // rng.f64n(max) - return 64bit real in [0, max) [inline] pub fn (mut rng MT19937RNG) f64n(max f64) f64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f64() * max } // rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max) [inline] pub fn (mut rng MT19937RNG) f32_in_range(min f32, max f32) f32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f32n(max - min) } // rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) [inline] pub fn (mut rng MT19937RNG) f64_in_range(min f64, max f64) f64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f64n(max - min) }