module edwards25519 import math.bits import math.unsigned import encoding.binary import crypto.internal.subtle // embedded unsigned.Uint128 struct Uint128 { unsigned.Uint128 } // Element represents an element of the edwards25519 GF(2^255-19). Note that this // is not a cryptographically secure group, and should only be used to interact // with edwards25519.Point coordinates. // // This type works similarly to math/big.Int, and all arguments and receivers // are allowed to alias. // // The zero value is a valid zero element. pub struct Element { mut: // An element t represents the integer // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204 // // Between operations, all limbs are expected to be lower than 2^52. l0 u64 l1 u64 l2 u64 l3 u64 l4 u64 } const ( mask_low_51_bits = u64((1 << 51) - 1) fe_zero = Element{ l0: 0 l1: 0 l2: 0 l3: 0 l4: 0 } fe_one = Element{ l0: 1 l1: 0 l2: 0 l3: 0 l4: 0 } // sqrt_m1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion. sqrt_m1 = Element{ l0: 1718705420411056 l1: 234908883556509 l2: 2233514472574048 l3: 2117202627021982 l4: 765476049583133 } ) // mul_64 returns a * b. fn mul_64(a u64, b u64) Uint128 { hi, lo := bits.mul_64(a, b) return Uint128{ lo: lo hi: hi } } // add_mul_64 returns v + a * b. fn add_mul_64(v Uint128, a u64, b u64) Uint128 { mut hi, lo := bits.mul_64(a, b) low, carry := bits.add_64(lo, v.lo, 0) hi, _ = bits.add_64(hi, v.hi, carry) return Uint128{ lo: low hi: hi } } // shift_right_by_51 returns a >> 51. a is assumed to be at most 115 bits. fn shift_right_by_51(a Uint128) u64 { return (a.hi << (64 - 51)) | (a.lo >> 51) } fn fe_mul_generic(a Element, b Element) Element { a0 := a.l0 a1 := a.l1 a2 := a.l2 a3 := a.l3 a4 := a.l4 b0 := b.l0 b1 := b.l1 b2 := b.l2 b3 := b.l3 b4 := b.l4 // Limb multiplication works like pen-and-paper columnar multiplication, but // with 51-bit limbs instead of digits. // // a4 a3 a2 a1 a0 x // b4 b3 b2 b1 b0 = // ------------------------ // a4b0 a3b0 a2b0 a1b0 a0b0 + // a4b1 a3b1 a2b1 a1b1 a0b1 + // a4b2 a3b2 a2b2 a1b2 a0b2 + // a4b3 a3b3 a2b3 a1b3 a0b3 + // a4b4 a3b4 a2b4 a1b4 a0b4 = // ---------------------------------------------- // r8 r7 r6 r5 r4 r3 r2 r1 r0 // // We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to // reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5, // r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc. // // Reduction can be carried out simultaneously to multiplication. For // example, we do not compute r5: whenever the result of a multiplication // belongs to r5, like a1b4, we multiply it by 19 and add the result to r0. // // a4b0 a3b0 a2b0 a1b0 a0b0 + // a3b1 a2b1 a1b1 a0b1 19×a4b1 + // a2b2 a1b2 a0b2 19×a4b2 19×a3b2 + // a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 + // a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 = // -------------------------------------- // r4 r3 r2 r1 r0 // // Finally we add up the columns into wide, overlapping limbs. a1_19 := a1 * 19 a2_19 := a2 * 19 a3_19 := a3 * 19 a4_19 := a4 * 19 // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) mut r0 := mul_64(a0, b0) r0 = add_mul_64(r0, a1_19, b4) r0 = add_mul_64(r0, a2_19, b3) r0 = add_mul_64(r0, a3_19, b2) r0 = add_mul_64(r0, a4_19, b1) // r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2) mut r1 := mul_64(a0, b1) r1 = add_mul_64(r1, a1, b0) r1 = add_mul_64(r1, a2_19, b4) r1 = add_mul_64(r1, a3_19, b3) r1 = add_mul_64(r1, a4_19, b2) // r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3) mut r2 := mul_64(a0, b2) r2 = add_mul_64(r2, a1, b1) r2 = add_mul_64(r2, a2, b0) r2 = add_mul_64(r2, a3_19, b4) r2 = add_mul_64(r2, a4_19, b3) // r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4 mut r3 := mul_64(a0, b3) r3 = add_mul_64(r3, a1, b2) r3 = add_mul_64(r3, a2, b1) r3 = add_mul_64(r3, a3, b0) r3 = add_mul_64(r3, a4_19, b4) // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 mut r4 := mul_64(a0, b4) r4 = add_mul_64(r4, a1, b3) r4 = add_mul_64(r4, a2, b2) r4 = add_mul_64(r4, a3, b1) r4 = add_mul_64(r4, a4, b0) // After the multiplication, we need to reduce (carry) the five coefficients // to obtain a result with limbs that are at most slightly larger than 2⁵¹, // to respect the Element invariant. // // Overall, the reduction works the same as carryPropagate, except with // wider inputs: we take the carry for each coefficient by shifting it right // by 51, and add it to the limb above it. The top carry is multiplied by 19 // according to the reduction identity and added to the lowest limb. // // The largest coefficient (r0) will be at most 111 bits, which guarantees // that all carries are at most 111 - 51 = 60 bits, which fits in a u64. // // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) // r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²) // r0 < (1 + 19 × 4) × 2⁵² × 2⁵² // r0 < 2⁷ × 2⁵² × 2⁵² // r0 < 2¹¹¹ // // Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most // 56 bits, and c4 * 19 is at most 61 bits, which again fits in a u64 and // allows us to easily apply the reduction identity. // // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 // r4 < 5 × 2⁵² × 2⁵² // r4 < 2¹⁰⁷ // c0 := shift_right_by_51(r0) c1 := shift_right_by_51(r1) c2 := shift_right_by_51(r2) c3 := shift_right_by_51(r3) c4 := shift_right_by_51(r4) rr0 := r0.lo & edwards25519.mask_low_51_bits + c4 * 19 rr1 := r1.lo & edwards25519.mask_low_51_bits + c0 rr2 := r2.lo & edwards25519.mask_low_51_bits + c1 rr3 := r3.lo & edwards25519.mask_low_51_bits + c2 rr4 := r4.lo & edwards25519.mask_low_51_bits + c3 // Now all coefficients fit into 64-bit registers but are still too large to // be passed around as a Element. We therefore do one last carry chain, // where the carries will be small enough to fit in the wiggle room above 2⁵¹. mut v := Element{ l0: rr0 l1: rr1 l2: rr2 l3: rr3 l4: rr4 } // v.carryPropagate() // using `carry_propagate_generic()` instead v = v.carry_propagate_generic() return v } // carry_propagate_generic brings the limbs below 52 bits by applying the reduction // identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. fn (mut v Element) carry_propagate_generic() Element { c0 := v.l0 >> 51 c1 := v.l1 >> 51 c2 := v.l2 >> 51 c3 := v.l3 >> 51 c4 := v.l4 >> 51 v.l0 = v.l0 & edwards25519.mask_low_51_bits + c4 * 19 v.l1 = v.l1 & edwards25519.mask_low_51_bits + c0 v.l2 = v.l2 & edwards25519.mask_low_51_bits + c1 v.l3 = v.l3 & edwards25519.mask_low_51_bits + c2 v.l4 = v.l4 & edwards25519.mask_low_51_bits + c3 return v } fn fe_square_generic(a Element) Element { l0 := a.l0 l1 := a.l1 l2 := a.l2 l3 := a.l3 l4 := a.l4 // Squaring works precisely like multiplication above, but thanks to its // symmetry we get to group a few terms together. // // l4 l3 l2 l1 l0 x // l4 l3 l2 l1 l0 = // ------------------------ // l4l0 l3l0 l2l0 l1l0 l0l0 + // l4l1 l3l1 l2l1 l1l1 l0l1 + // l4l2 l3l2 l2l2 l1l2 l0l2 + // l4l3 l3l3 l2l3 l1l3 l0l3 + // l4l4 l3l4 l2l4 l1l4 l0l4 = // ---------------------------------------------- // r8 r7 r6 r5 r4 r3 r2 r1 r0 // // l4l0 l3l0 l2l0 l1l0 l0l0 + // l3l1 l2l1 l1l1 l0l1 19×l4l1 + // l2l2 l1l2 l0l2 19×l4l2 19×l3l2 + // l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 + // l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 = // -------------------------------------- // r4 r3 r2 r1 r0 // // With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with // only three mul_64 and four Add64, instead of five and eight. l0_2 := l0 * 2 l1_2 := l1 * 2 l1_38 := l1 * 38 l2_38 := l2 * 38 l3_38 := l3 * 38 l3_19 := l3 * 19 l4_19 := l4 * 19 // r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3) mut r0 := mul_64(l0, l0) r0 = add_mul_64(r0, l1_38, l4) r0 = add_mul_64(r0, l2_38, l3) // r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3 mut r1 := mul_64(l0_2, l1) r1 = add_mul_64(r1, l2_38, l4) r1 = add_mul_64(r1, l3_19, l3) // r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4 mut r2 := mul_64(l0_2, l2) r2 = add_mul_64(r2, l1, l1) r2 = add_mul_64(r2, l3_38, l4) // r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4 mut r3 := mul_64(l0_2, l3) r3 = add_mul_64(r3, l1_2, l2) r3 = add_mul_64(r3, l4_19, l4) // r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2 mut r4 := mul_64(l0_2, l4) r4 = add_mul_64(r4, l1_2, l3) r4 = add_mul_64(r4, l2, l2) c0 := shift_right_by_51(r0) c1 := shift_right_by_51(r1) c2 := shift_right_by_51(r2) c3 := shift_right_by_51(r3) c4 := shift_right_by_51(r4) rr0 := r0.lo & edwards25519.mask_low_51_bits + c4 * 19 rr1 := r1.lo & edwards25519.mask_low_51_bits + c0 rr2 := r2.lo & edwards25519.mask_low_51_bits + c1 rr3 := r3.lo & edwards25519.mask_low_51_bits + c2 rr4 := r4.lo & edwards25519.mask_low_51_bits + c3 mut v := Element{ l0: rr0 l1: rr1 l2: rr2 l3: rr3 l4: rr4 } v = v.carry_propagate_generic() return v } // zero sets v = 0, and returns v. pub fn (mut v Element) zero() Element { v = edwards25519.fe_zero return v } // one sets v = 1, and returns v. pub fn (mut v Element) one() Element { v = edwards25519.fe_one return v } // reduce reduces v modulo 2^255 - 19 and returns it. pub fn (mut v Element) reduce() Element { v = v.carry_propagate_generic() // After the light reduction we now have a edwards25519 element representation // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19. // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1, // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise. mut c := (v.l0 + 19) >> 51 c = (v.l1 + c) >> 51 c = (v.l2 + c) >> 51 c = (v.l3 + c) >> 51 c = (v.l4 + c) >> 51 // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's // effectively applying the reduction identity to the carry. v.l0 += 19 * c v.l1 += v.l0 >> 51 v.l0 = v.l0 & edwards25519.mask_low_51_bits v.l2 += v.l1 >> 51 v.l1 = v.l1 & edwards25519.mask_low_51_bits v.l3 += v.l2 >> 51 v.l2 = v.l2 & edwards25519.mask_low_51_bits v.l4 += v.l3 >> 51 v.l3 = v.l3 & edwards25519.mask_low_51_bits // no additional carry v.l4 = v.l4 & edwards25519.mask_low_51_bits return v } // add sets v = a + b, and returns v. pub fn (mut v Element) add(a Element, b Element) Element { v.l0 = a.l0 + b.l0 v.l1 = a.l1 + b.l1 v.l2 = a.l2 + b.l2 v.l3 = a.l3 + b.l3 v.l4 = a.l4 + b.l4 // Using the generic implementation here is actually faster than the // assembly. Probably because the body of this function is so simple that // the compiler can figure out better optimizations by inlining the carry // propagation. return v.carry_propagate_generic() } // subtract sets v = a - b, and returns v. pub fn (mut v Element) subtract(a Element, b Element) Element { // We first add 2 * p, to guarantee the subtraction won't underflow, and // then subtract b (which can be up to 2^255 + 2^13 * 19). v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0 v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1 v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2 v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3 v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4 return v.carry_propagate_generic() } // negate sets v = -a, and returns v. pub fn (mut v Element) negate(a Element) Element { return v.subtract(edwards25519.fe_zero, a) } // invert sets v = 1/z mod p, and returns v. // // If z == 0, invert returns v = 0. pub fn (mut v Element) invert(z Element) Element { // Inversion is implemented as exponentiation with exponent p − 2. It uses the // same sequence of 255 squarings and 11 multiplications as [Curve25519]. mut z2 := Element{} mut z9 := Element{} mut z11 := Element{} mut z2_5_0 := Element{} mut z2_10_0 := Element{} mut z2_20_0 := Element{} mut z2_50_0 := Element{} mut z2_100_0 := Element{} mut t := Element{} z2.square(z) // 2 t.square(z2) // 4 t.square(t) // 8 z9.multiply(t, z) // 9 z11.multiply(z9, z2) // 11 t.square(z11) // 22 z2_5_0.multiply(t, z9) // 31 = 2^5 - 2^0 t.square(z2_5_0) // 2^6 - 2^1 for i := 0; i < 4; i++ { t.square(t) // 2^10 - 2^5 } z2_10_0.multiply(t, z2_5_0) // 2^10 - 2^0 t.square(z2_10_0) // 2^11 - 2^1 for i := 0; i < 9; i++ { t.square(t) // 2^20 - 2^10 } z2_20_0.multiply(t, z2_10_0) // 2^20 - 2^0 t.square(z2_20_0) // 2^21 - 2^1 for i := 0; i < 19; i++ { t.square(t) // 2^40 - 2^20 } t.multiply(t, z2_20_0) // 2^40 - 2^0 t.square(t) // 2^41 - 2^1 for i := 0; i < 9; i++ { t.square(t) // 2^50 - 2^10 } z2_50_0.multiply(t, z2_10_0) // 2^50 - 2^0 t.square(z2_50_0) // 2^51 - 2^1 for i := 0; i < 49; i++ { t.square(t) // 2^100 - 2^50 } z2_100_0.multiply(t, z2_50_0) // 2^100 - 2^0 t.square(z2_100_0) // 2^101 - 2^1 for i := 0; i < 99; i++ { t.square(t) // 2^200 - 2^100 } t.multiply(t, z2_100_0) // 2^200 - 2^0 t.square(t) // 2^201 - 2^1 for i := 0; i < 49; i++ { t.square(t) // 2^250 - 2^50 } t.multiply(t, z2_50_0) // 2^250 - 2^0 t.square(t) // 2^251 - 2^1 t.square(t) // 2^252 - 2^2 t.square(t) // 2^253 - 2^3 t.square(t) // 2^254 - 2^4 t.square(t) // 2^255 - 2^5 return v.multiply(t, z11) // 2^255 - 21 } // square sets v = x * x, and returns v. pub fn (mut v Element) square(x Element) Element { v = fe_square_generic(x) return v } // multiply sets v = x * y, and returns v. pub fn (mut v Element) multiply(x Element, y Element) Element { v = fe_mul_generic(x, y) return v } // mul_51 returns lo + hi * 2⁵¹ = a * b. fn mul_51(a u64, b u32) (u64, u64) { mh, ml := bits.mul_64(a, u64(b)) lo := ml & edwards25519.mask_low_51_bits hi := (mh << 13) | (ml >> 51) return lo, hi } // pow_22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3. pub fn (mut v Element) pow_22523(x Element) Element { mut t0, mut t1, mut t2 := Element{}, Element{}, Element{} t0.square(x) // x^2 t1.square(t0) // x^4 t1.square(t1) // x^8 t1.multiply(x, t1) // x^9 t0.multiply(t0, t1) // x^11 t0.square(t0) // x^22 t0.multiply(t1, t0) // x^31 t1.square(t0) // x^62 for i := 1; i < 5; i++ { // x^992 t1.square(t1) } t0.multiply(t1, t0) // x^1023 -> 1023 = 2^10 - 1 t1.square(t0) // 2^11 - 2 for i := 1; i < 10; i++ { // 2^20 - 2^10 t1.square(t1) } t1.multiply(t1, t0) // 2^20 - 1 t2.square(t1) // 2^21 - 2 for i := 1; i < 20; i++ { // 2^40 - 2^20 t2.square(t2) } t1.multiply(t2, t1) // 2^40 - 1 t1.square(t1) // 2^41 - 2 for i := 1; i < 10; i++ { // 2^50 - 2^10 t1.square(t1) } t0.multiply(t1, t0) // 2^50 - 1 t1.square(t0) // 2^51 - 2 for i := 1; i < 50; i++ { // 2^100 - 2^50 t1.square(t1) } t1.multiply(t1, t0) // 2^100 - 1 t2.square(t1) // 2^101 - 2 for i := 1; i < 100; i++ { // 2^200 - 2^100 t2.square(t2) } t1.multiply(t2, &t1) // 2^200 - 1 t1.square(t1) // 2^201 - 2 for i := 1; i < 50; i++ { // 2^250 - 2^50 t1.square(t1) } t0.multiply(t1, t0) // 2^250 - 1 t0.square(t0) // 2^251 - 2 t0.square(t0) // 2^252 - 4 return v.multiply(t0, x) // 2^252 - 3 -> x^(2^252-3) } // sqrt_ratio sets r to the non-negative square root of the ratio of u and v. // // If u/v is square, sqrt_ratio returns r and 1. If u/v is not square, sqrt_ratio // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00, // and returns r and 0. pub fn (mut r Element) sqrt_ratio(u Element, v Element) (Element, int) { mut a, mut b := Element{}, Element{} // r = (u * v3) * (u * v7)^((p-5)/8) v2 := a.square(v) uv3 := b.multiply(u, b.multiply(v2, v)) uv7 := a.multiply(uv3, a.square(v2)) r.multiply(uv3, r.pow_22523(uv7)) mut check := a.multiply(v, a.square(r)) // check = v * r^2 mut uneg := b.negate(u) correct_sign_sqrt := check.equal(u) flipped_sign_sqrt := check.equal(uneg) flipped_sign_sqrt_i := check.equal(uneg.multiply(uneg, edwards25519.sqrt_m1)) rprime := b.multiply(r, edwards25519.sqrt_m1) // r_prime = SQRT_M1 * r // r = CT_selected(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) r.selected(rprime, r, flipped_sign_sqrt | flipped_sign_sqrt_i) r.absolute(r) // Choose the nonnegative square root. return r, correct_sign_sqrt | flipped_sign_sqrt } // mask_64_bits returns 0xffffffff if cond is 1, and 0 otherwise. fn mask_64_bits(cond int) u64 { // in go, `^` operates on bit mean NOT, flip bit // in v, its a ~ bitwise NOT return ~(u64(cond) - 1) } // selected sets v to a if cond == 1, and to b if cond == 0. pub fn (mut v Element) selected(a Element, b Element, cond int) Element { // see above notes m := mask_64_bits(cond) v.l0 = (m & a.l0) | (~m & b.l0) v.l1 = (m & a.l1) | (~m & b.l1) v.l2 = (m & a.l2) | (~m & b.l2) v.l3 = (m & a.l3) | (~m & b.l3) v.l4 = (m & a.l4) | (~m & b.l4) return v } // is_negative returns 1 if v is negative, and 0 otherwise. pub fn (mut v Element) is_negative() int { return int(v.bytes()[0] & 1) } // absolute sets v to |u|, and returns v. pub fn (mut v Element) absolute(u Element) Element { mut e := Element{} mut uk := u return v.selected(e.negate(uk), uk, uk.is_negative()) } // set sets v = a, and returns v. pub fn (mut v Element) set(a Element) Element { v = a return v } // set_bytes sets v to x, where x is a 32-byte little-endian encoding. If x is // not of the right length, SetUniformBytes returns an error, and the // receiver is unchanged. // // Consistent with RFC 7748, the most significant bit (the high bit of the // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1) // are accepted. Note that this is laxer than specified by RFC 8032. pub fn (mut v Element) set_bytes(x []u8) !Element { if x.len != 32 { return error('edwards25519: invalid edwards25519 element input size') } // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51). v.l0 = binary.little_endian_u64(x[0..8]) v.l0 &= edwards25519.mask_low_51_bits // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51). v.l1 = binary.little_endian_u64(x[6..14]) >> 3 v.l1 &= edwards25519.mask_low_51_bits // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51). v.l2 = binary.little_endian_u64(x[12..20]) >> 6 v.l2 &= edwards25519.mask_low_51_bits // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51). v.l3 = binary.little_endian_u64(x[19..27]) >> 1 v.l3 &= edwards25519.mask_low_51_bits // Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51). // Note: not bytes 25:33, shift 4, to avoid overread. v.l4 = binary.little_endian_u64(x[24..32]) >> 12 v.l4 &= edwards25519.mask_low_51_bits return v } // bytes returns the canonical 32-byte little-endian encoding of v. pub fn (mut v Element) bytes() []u8 { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. // out := v.bytes_generic() return v.bytes_generic() } fn (mut v Element) bytes_generic() []u8 { mut out := []u8{len: 32} v = v.reduce() mut buf := []u8{len: 8} idxs := [v.l0, v.l1, v.l2, v.l3, v.l4] for i, l in idxs { bits_offset := i * 51 binary.little_endian_put_u64(mut buf, l << u32(bits_offset % 8)) for j, bb in buf { off := bits_offset / 8 + j if off >= out.len { break } out[off] |= bb } } return out } // equal returns 1 if v and u are equal, and 0 otherwise. pub fn (mut v Element) equal(ue Element) int { mut u := ue sa := u.bytes() sv := v.bytes() return subtle.constant_time_compare(sa, sv) } // swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v. pub fn (mut v Element) swap(mut u Element, cond int) { // mut u := ue m := mask_64_bits(cond) mut t := m & (v.l0 ^ u.l0) v.l0 ^= t u.l0 ^= t t = m & (v.l1 ^ u.l1) v.l1 ^= t u.l1 ^= t t = m & (v.l2 ^ u.l2) v.l2 ^= t u.l2 ^= t t = m & (v.l3 ^ u.l3) v.l3 ^= t u.l3 ^= t t = m & (v.l4 ^ u.l4) v.l4 ^= t u.l4 ^= t } // mult_32 sets v = x * y, and returns v. pub fn (mut v Element) mult_32(x Element, y u32) Element { x0lo, x0hi := mul_51(x.l0, y) x1lo, x1hi := mul_51(x.l1, y) x2lo, x2hi := mul_51(x.l2, y) x3lo, x3hi := mul_51(x.l3, y) x4lo, x4hi := mul_51(x.l4, y) v.l0 = x0lo + 19 * x4hi // carried over per the reduction identity v.l1 = x1lo + x0hi v.l2 = x2lo + x1hi v.l3 = x3lo + x2hi v.l4 = x4lo + x3hi // The hi portions are going to be only 32 bits, plus any previous excess, // so we can skip the carry propagation. return v } fn swap_endianness(mut buf []u8) []u8 { for i := 0; i < buf.len / 2; i++ { buf[i], buf[buf.len - i - 1] = buf[buf.len - i - 1], buf[i] } return buf }