// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module math // aprox_sin returns an approximation of sin(a) made using lolremez pub fn aprox_sin(a f64) f64 { a0 := 1.91059300966915117e-31 a1 := 1.00086760103908896 a2 := -1.21276126894734565e-2 a3 := -1.38078780785773762e-1 a4 := -2.67353392911981221e-2 a5 := 2.08026600266304389e-2 a6 := -3.03996055049204407e-3 a7 := 1.38235642404333740e-4 return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7)))))) } // aprox_cos returns an approximation of sin(a) made using lolremez pub fn aprox_cos(a f64) f64 { a0 := 9.9995999154986614e-1 a1 := 1.2548995793001028e-3 a2 := -5.0648546280678015e-1 a3 := 1.2942246466519995e-2 a4 := 2.8668384702547972e-2 a5 := 7.3726485210586547e-3 a6 := -3.8510875386947414e-3 a7 := 4.7196604604366623e-4 a8 := -1.8776444013090451e-5 return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8))))))) } // copysign returns a value with the magnitude of x and the sign of y [inline] pub fn copysign(x f64, y f64) f64 { return f64_from_bits((f64_bits(x) & ~sign_mask) | (f64_bits(y) & sign_mask)) } // degrees converts from radians to degrees. [inline] pub fn degrees(radians f64) f64 { return radians * (180.0 / pi) } // angle_diff calculates the difference between angles in radians [inline] pub fn angle_diff(radian_a f64, radian_b f64) f64 { mut delta := fmod(radian_b - radian_a, tau) delta = fmod(delta + 1.5 * tau, tau) delta -= .5 * tau return delta } [params] pub struct DigitParams { base int = 10 reverse bool } // digits returns an array of the digits of `num` in the given optional `base`. // The `num` argument accepts any integer type (i8|i16|int|isize|i64), and will be cast to i64 // The `base:` argument is optional, it will default to base: 10. // This function returns an array of the digits in reverse order i.e.: // Example: assert math.digits(12345, base: 10) == [5,4,3,2,1] // You can also use it, with an explicit `reverse: true` parameter, // (it will do a reverse of the result array internally => slower): // Example: assert math.digits(12345, reverse: true) == [1,2,3,4,5] pub fn digits(num i64, params DigitParams) []int { // set base to 10 initially and change only if base is explicitly set. mut b := params.base if b < 2 { panic('digits: Cannot find digits of n with base ${b}') } mut n := num mut sign := 1 if n < 0 { sign = -1 n = -n } mut res := []int{} if n == 0 { // short-circuit and return 0 res << 0 return res } for n != 0 { next_n := n / b res << int(n - next_n * b) n = next_n } if sign == -1 { res[res.len - 1] *= sign } if params.reverse { res = res.reverse() } return res } // count_digits return the number of digits in the number passed. // Number argument accepts any integer type (i8|i16|int|isize|i64) and will be cast to i64 pub fn count_digits(number i64) int { mut n := number if n == 0 { return 1 } mut c := 0 for n != 0 { n = n / 10 c++ } return c } // minmax returns the minimum and maximum value of the two provided. pub fn minmax(a f64, b f64) (f64, f64) { if a < b { return a, b } return b, a } // clamp returns x constrained between a and b [inline] pub fn clamp(x f64, a f64, b f64) f64 { if x < a { return a } if x > b { return b } return x } // sign returns the corresponding sign -1.0, 1.0 of the provided number. // if n is not a number, its sign is nan too. [inline] pub fn sign(n f64) f64 { if is_nan(n) { return nan() } return copysign(1.0, n) } // signi returns the corresponding sign -1, 1 of the provided number. [inline] pub fn signi(n f64) int { return int(copysign(1.0, n)) } // radians converts from degrees to radians. [inline] pub fn radians(degrees f64) f64 { return degrees * (pi / 180.0) } // signbit returns a value with the boolean representation of the sign for x [inline] pub fn signbit(x f64) bool { return f64_bits(x) & sign_mask != 0 } // tolerance checks if a and b difference are less than or equal to the tolerance value pub fn tolerance(a f64, b f64, tol f64) bool { mut ee := tol // Multiplying by ee here can underflow denormal values to zero. // Check a==b so that at least if a and b are small and identical // we say they match. if a == b { return true } mut d := a - b if d < 0 { d = -d } // note: b is correct (expected) value, a is actual value. // make error tolerance a fraction of b, not a. if b != 0 { ee = ee * b if ee < 0 { ee = -ee } } return d < ee } // close checks if a and b are within 1e-14 of each other pub fn close(a f64, b f64) bool { return tolerance(a, b, 1e-14) } // veryclose checks if a and b are within 4e-16 of each other pub fn veryclose(a f64, b f64) bool { return tolerance(a, b, 4e-16) } // alike checks if a and b are equal pub fn alike(a f64, b f64) bool { if is_nan(a) && is_nan(b) { return true } else if a == b { return signbit(a) == signbit(b) } return false } fn is_odd_int(x f64) bool { xi, xf := modf(x) return xf == 0 && (i64(xi) & 1) == 1 } fn is_neg_int(x f64) bool { if x < 0 { _, xf := modf(x) return xf == 0 } return false }