// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module parser import ( v.scanner v.ast v.token v.table v.types term os ) struct Parser { scanner &scanner.Scanner file_name string mut: tok token.Token peek_tok token.Token // vars []string table &table.Table return_type types.Type } pub fn parse_stmt(text string, table &table.Table) ast.Stmt { s := scanner.new_scanner(text) mut p := Parser{ scanner: s table: table } p.read_first_token() return p.stmt() } pub fn parse_file(path string, table &table.Table) ast.File { println('parse file "$path"') text := os.read_file(path) or { panic(err) } mut stmts := []ast.Stmt mut p := Parser{ scanner: scanner.new_scanner(text) table: table file_name: path } p.read_first_token() for { // res := s.scan() if p.tok.kind == .eof { break } // println('expr at ' + p.tok.str()) s := p.stmt() // println(s) stmts << s // p.stmt() } p.check_fn_calls() // println('nr stmts = $stmts.len') // println(stmts[0]) return ast.File{ stmts: stmts } } pub fn parse_files(paths []string, table &table.Table) []ast.File { mut files := []ast.File for path in paths { files << parse_file(path, table) } return files } // former get_type() pub fn (p mut Parser) parse_type() types.Type { typ := p.table.types[p.tok.lit] if isnil(typ.name.str) || typ.name == '' { p.error('undefined type `$p.tok.lit`') } p.next() return typ } pub fn (p mut Parser) read_first_token() { // need to call next() twice to get peek token and current token p.next() p.next() } pub fn (p mut Parser) parse_block() []ast.Stmt { p.check(.lcbr) mut stmts := []ast.Stmt for { // res := s.scan() if p.tok.kind in [.eof, .rcbr] { break } // println('expr at ' + p.tok.str()) stmts << p.stmt() } p.check(.rcbr) // println('nr exprs in block = $exprs.len') return stmts } fn (p mut Parser) next() { p.tok = p.peek_tok p.peek_tok = p.scanner.scan() // println(p.tok.str()) } fn (p mut Parser) check(expected token.Kind) { if p.tok.kind != expected { s := 'syntax error: unexpected `${p.tok.kind.str()}`, expecting `${expected.str()}`' p.error(s) } p.next() } fn (p mut Parser) check_name() string { name := p.tok.lit p.check(.name) return name } pub fn (p mut Parser) stmt() ast.Stmt { // println('stmt at ' + p.tok.str()) // `x := ...` if p.tok.kind == .name { if p.peek_tok.kind == .decl_assign { return p.var_decl() } else if p.peek_tok.is_assign() { return p.assign_stmt() } } match p.tok.kind { .key_module { return p.module_decl() } .key_import { return p.import_stmt() } .key_pub { match p.peek_tok.kind { .key_fn { return p.fn_decl() } .key_struct, .key_union, .key_interface { return p.struct_decl() } else { p.error('wrong pub keyword usage') return ast.Stmt{} } } // .key_const { // return p.const_decl() // } // .key_enum { // return p.enum_decl() // } // .key_type { // return p.type_decl() // } } .key_fn { return p.fn_decl() } .key_struct { return p.struct_decl() } .key_return { return p.return_stmt() } .key_mut { return p.var_decl() } .key_for { return p.for_statement() } else { expr,_ := p.expr(0) return ast.ExprStmt{ expr: expr } } } } pub fn (p mut Parser) assign_stmt() ast.AssignStmt { name := p.tok.lit // println('looking for $name') var := p.table.find_var(name) or { p.error('unknown variable `$name`') exit(1) } if !var.is_mut { p.error('`$var.name` is immutable, declare it with `mut $var.name := ...`') } left_expr,left_type := p.expr(0) op := p.tok.kind // println('assignn_stmt() ' + op.str()) p.next() right_expr,right_type := p.expr(0) if !types.check(left_type, right_type) { p.error('oops') } return ast.AssignStmt{ left: left_expr right: right_expr op: op } } pub fn (p &Parser) error(s string) { println(term.bold(term.red('$p.file_name:$p.tok.line_nr: $s'))) exit(1) } pub fn (p &Parser) error_at_line(s string, line_nr int) { println(term.bold(term.red('$p.file_name:$line_nr: $s'))) exit(1) } pub fn (p &Parser) warn(s string) { println(term.blue('x.v:$p.tok.line_nr: $s')) } // Implementation of Pratt Precedence pub fn (p mut Parser) expr(rbp int) (ast.Expr,types.Type) { // println('expr at ' + p.tok.str()) // null denotation (prefix) mut node := ast.Expr{} mut typ := types.void_type match p.tok.kind { .name { /* sym := p.table.find_symbol(p.tok.lit) if sym.cat == .function { return } */ // fn call if p.peek_tok.kind == .lpar { x,typ2 := p.call_expr() // TODO `node,typ :=` should work node = x typ = typ2 } // struct init else if p.peek_tok.kind == .lcbr { typ = p.parse_type() // println('sturct init typ=$typ.name') p.check(.lcbr) mut field_names := []string mut exprs := []ast.Expr for p.tok.kind != .rcbr { field_name := p.check_name() field_names << field_name p.check(.colon) // expr,field_type := p.expr(0) expr,_ := p.expr(0) // if !types.check( ,field_type exprs << expr } node = ast.StructInit{ typ: typ exprs: exprs fields: field_names } p.check(.rcbr) } else { // name expr node = ast.Ident{ name: p.tok.lit } var := p.table.find_var(p.tok.lit) or { p.error('unknown variable `$p.tok.lit`') exit(0) } typ = var.typ // ///typ = types.int_type p.next() } } .lsbr { node,typ = p.array_init() } .key_true, .key_false { node = ast.BoolLiteral{ val: p.tok.kind == .key_true } typ = types.bool_type p.next() } .str { node,typ = p.parse_string_literal() } .number { node,typ = p.parse_number_literal() } .key_if { node,typ = p.if_expr() } .lpar { p.check(.lpar) p.next() node,typ = p.expr(token.lowest_prec) p.check(.rpar) } else { if p.tok.is_unary() { pt := p.tok p.next() expr,t2 := p.expr(token.lowest_prec) node = ast.UnaryExpr{ left: expr op: pt.kind } typ = t2 } else { p.error('!unknown token ' + p.tok.str()) } } } // left binding power for rbp < p.tok.precedence() { prev_tok := p.tok p.next() mut t2 := types.Type{} // left denotation (infix / postfix) if prev_tok.is_right_assoc() { mut expr := ast.Expr{} expr,t2 = p.expr(prev_tok.precedence() - 1) node = ast.BinaryExpr{ left: node op: prev_tok.kind right: expr } // println(t2.name + 'OOO') if !types.check(&typ, &t2) { println('tok: $prev_tok.str()') p.error('cannot convert `$t2.name` to `$typ.name`') } } else if prev_tok.is_left_assoc() { // postfix (`++` | `--`) if prev_tok.kind in [.inc, .dec] { node = ast.UnaryExpr{ left: node op: prev_tok.kind } } else { mut expr := ast.Expr{} expr,t2 = p.expr(prev_tok.precedence() - 1) if prev_tok.is_relational() { typ = types.bool_type } else { typ = t2 } // println(t2.name + '222') node = ast.BinaryExpr{ left: node op: prev_tok.kind right: expr } } } } return node,typ } fn (p mut Parser) for_statement() ast.ForStmt { p.check(.key_for) // `for i in start .. end` if p.peek_tok.kind == .key_in { var := p.check_name() p.check(.key_in) start := p.tok.lit.int() p.check(.number) p.check(.dotdot) end := p.tok.lit.int() // println('for start=$start $end') p.check(.number) stmts := p.parse_block() // println('nr stmts=$stmts.len') return ast.ForStmt{ stmts: stmts is_in: true } } // `for cond {` cond,typ := p.expr(0) if !types.check(types.bool_type, typ) { p.error('non-bool used as for condition') } stmts := p.parse_block() return ast.ForStmt{ cond: cond stmts: stmts } } fn (p mut Parser) if_expr() (ast.Expr,types.Type) { mut node := ast.Expr{} p.check(.key_if) cond,typ := p.expr(0) if !types.check(types.bool_type, typ) { p.error('non-bool used as if condition') } stmts := p.parse_block() mut else_stmts := []ast.Stmt if p.tok.kind == .key_else { println('GOT ELSE') p.check(.key_else) else_stmts = p.parse_block() } node = ast.IfExpr{ cond: cond stmts: stmts else_stmts: else_stmts } return node,types.void_type } fn (p mut Parser) parse_string_literal() (ast.Expr,types.Type) { mut node := ast.Expr{} node = ast.StringLiteral{ val: p.tok.lit } p.next() return node,types.string_type } fn (p mut Parser) array_init() (ast.Expr,types.Type) { p.check(.lsbr) mut val_type := types.void_type mut exprs := []ast.Expr mut i := 0 for p.tok.kind != .rsbr { expr,typ := p.expr(0) // The first element's type if i == 0 { val_type = typ } else if !types.check(val_type, typ) { p.error('expected array element with type `$val_type.name`') } exprs << expr i++ if p.tok.kind == .comma { p.check(.comma) } } mut node := ast.Expr{} node = ast.ArrayInit{ typ: val_type exprs: exprs } p.check(.rsbr) return node,val_type } fn (p mut Parser) parse_number_literal() (ast.Expr,types.Type) { lit := p.tok.lit mut node := ast.Expr{} mut typ := types.int_type if lit.contains('.') { node = ast.FloatLiteral{ // val: lit.f64() val: lit } typ = types.f64_type } else { node = ast.IntegerLiteral{ val: lit.int() } typ = types.int_type } p.next() return node,typ } fn (p mut Parser) module_decl() ast.Module { p.check(.key_module) p.next() return ast.Module{} } fn (p mut Parser) import_stmt() ast.Import { p.check(.key_import) name := p.check_name() return ast.Import{ mods: [name] } } fn (p mut Parser) struct_decl() ast.StructDecl { is_pub := p.tok.kind == .key_pub if is_pub { p.next() } p.check(.key_struct) name := p.check_name() p.check(.lcbr) mut fields := []ast.Field for p.tok.kind != .rcbr { if p.tok.kind == .key_pub { p.check(.key_pub) p.check(.colon) } field_name := p.check_name() typ := p.parse_type() fields << ast.Field{ name: field_name typ: typ } } p.check(.rcbr) p.table.register_type(types.Type{ name: name }) return ast.StructDecl{ name: name is_pub: is_pub fields: fields } } fn (p mut Parser) return_stmt() ast.Return { p.next() expr,t := p.expr(0) if !types.check(p.return_type, t) { p.error('cannot use `$t.name` as type `$p.return_type.name` in return argument') } return ast.Return{ expr: expr } } fn (p mut Parser) var_decl() ast.VarDecl { is_mut := p.tok.kind == .key_mut // || p.prev_tok == .key_for // is_static := p.tok.kind == .key_static if p.tok.kind == .key_mut { p.check(.key_mut) // p.fspace() } if p.tok.kind == .key_static { p.check(.key_static) // p.fspace() } name := p.tok.lit p.read_first_token() expr,t := p.expr(token.lowest_prec) if _ := p.table.find_var(name) { p.error('redefinition of `$name`') } p.table.register_var(table.Var{ name: name typ: t is_mut: is_mut }) // println(p.table.names) // println('added $name') return ast.VarDecl{ name: name expr: expr // p.expr(token.lowest_prec) typ: t } } fn verror(s string) { println(s) exit(1) }