// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module rand import rand.seed import rand.wyrand import time // PRNGConfigStruct is a configuration struct for creating a new instance of the default RNG. pub struct PRNGConfigStruct { seed []u32 = seed.time_seed_array(2) } // init initializes the default RNG. fn init() { mut srng := unsafe { static_srng() } (*srng) = new_default({}) } [unsafe] fn static_srng() &&wyrand.WyRandRNG { static srng := &wyrand.WyRandRNG(0) return &srng } [inline] fn get_default() &wyrand.WyRandRNG { return unsafe { *static_srng() } } // new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance. pub fn new_default(config PRNGConfigStruct) &wyrand.WyRandRNG { mut rng := &wyrand.WyRandRNG{} rng.seed(config.seed) return rng } // seed sets the given array of `u32` values as the seed for the `get_default()`. pub fn seed(seed []u32) { get_default().seed(seed) } // u32 returns a uniformly distributed `u32` in range `[0, 2³²)`. pub fn u32() u32 { return get_default().u32() } // u64 returns a uniformly distributed `u64` in range `[0, 2⁶⁴)`. pub fn u64() u64 { return get_default().u64() } // u32n returns a uniformly distributed pseudorandom 32-bit signed positive `u32` in range `[0, max)`. pub fn u32n(max u32) u32 { return get_default().u32n(max) } // u64n returns a uniformly distributed pseudorandom 64-bit signed positive `u64` in range `[0, max)`. pub fn u64n(max u64) u64 { return get_default().u64n(max) } // u32_in_range returns a uniformly distributed pseudorandom 32-bit unsigned `u32` in range `[min, max)`. pub fn u32_in_range(min u32, max u32) u32 { return get_default().u32_in_range(min, max) } // u64_in_range returns a uniformly distributed pseudorandom 64-bit unsigned `u64` in range `[min, max)`. pub fn u64_in_range(min u64, max u64) u64 { return get_default().u64_in_range(min, max) } // int returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) `int`. pub fn int() int { return get_default().int() } // intn returns a uniformly distributed pseudorandom 32-bit signed positive `int` in range `[0, max)`. pub fn intn(max int) int { return get_default().intn(max) } // byte returns a uniformly distributed pseudorandom 8-bit unsigned positive `byte`. pub fn byte() byte { return byte(get_default().u32() & 0xff) } // int_in_range returns a uniformly distributed pseudorandom 32-bit signed int in range `[min, max)`. // Both `min` and `max` can be negative, but we must have `min < max`. pub fn int_in_range(min int, max int) int { return get_default().int_in_range(min, max) } // int31 returns a uniformly distributed pseudorandom 31-bit signed positive `int`. pub fn int31() int { return get_default().int31() } // i64 returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) `i64`. pub fn i64() i64 { return get_default().i64() } // i64n returns a uniformly distributed pseudorandom 64-bit signed positive `i64` in range `[0, max)`. pub fn i64n(max i64) i64 { return get_default().i64n(max) } // i64_in_range returns a uniformly distributed pseudorandom 64-bit signed `i64` in range `[min, max)`. pub fn i64_in_range(min i64, max i64) i64 { return get_default().i64_in_range(min, max) } // int63 returns a uniformly distributed pseudorandom 63-bit signed positive `i64`. pub fn int63() i64 { return get_default().int63() } // f32 returns a uniformly distributed 32-bit floating point in range `[0, 1)`. pub fn f32() f32 { return get_default().f32() } // f64 returns a uniformly distributed 64-bit floating point in range `[0, 1)`. pub fn f64() f64 { return get_default().f64() } // f32n returns a uniformly distributed 32-bit floating point in range `[0, max)`. pub fn f32n(max f32) f32 { return get_default().f32n(max) } // f64n returns a uniformly distributed 64-bit floating point in range `[0, max)`. pub fn f64n(max f64) f64 { return get_default().f64n(max) } // f32_in_range returns a uniformly distributed 32-bit floating point in range `[min, max)`. pub fn f32_in_range(min f32, max f32) f32 { return get_default().f32_in_range(min, max) } // f64_in_range returns a uniformly distributed 64-bit floating point in range `[min, max)`. pub fn f64_in_range(min f64, max f64) f64 { return get_default().f64_in_range(min, max) } const ( english_letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' hex_chars = 'abcdef0123456789' ascii_chars = '!"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\\^_`abcdefghijklmnopqrstuvwxyz{|}~' ) // string_from_set returns a string of length `len` containing random characters sampled from the given `charset` pub fn string_from_set(charset string, len int) string { if len == 0 { return '' } mut buf := unsafe { malloc(len) } for i in 0 .. len { unsafe { buf[i] = charset[intn(charset.len)] } } return unsafe { buf.vstring_with_len(len) } } // string returns a string of length `len` containing random characters in range `[a-zA-Z]`. pub fn string(len int) string { return string_from_set(rand.english_letters, len) } // hex returns a hexadecimal number of length `len` containing random characters in range `[a-f0-9]`. pub fn hex(len int) string { return string_from_set(rand.hex_chars, len) } // ascii returns a random string of the printable ASCII characters with length `len`. pub fn ascii(len int) string { return string_from_set(rand.ascii_chars, len) } // uuid_v4 generates a random (v4) UUID // See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random) pub fn uuid_v4() string { buflen := 36 mut buf := unsafe { malloc(37) } mut i_buf := 0 mut x := u64(0) mut d := byte(0) for i_buf < buflen { mut c := 0 x = get_default().u64() // do most of the bit manipulation at once: x &= 0x0F0F0F0F0F0F0F0F x += 0x3030303030303030 // write the ASCII codes to the buffer: for c < 8 && i_buf < buflen { d = byte(x) unsafe { buf[i_buf] = if d > 0x39 { d + 0x27 } else { d } } i_buf++ c++ x = x >> 8 } } // there are still some random bits in x: x = x >> 8 d = byte(x) unsafe { buf[19] = if d > 0x39 { d + 0x27 } else { d } buf[8] = `-` buf[13] = `-` buf[18] = `-` buf[23] = `-` buf[14] = `4` buf[buflen] = 0 return buf.vstring_with_len(buflen) } } const ( ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ' ) // ulid generates an Unique Lexicographically sortable IDentifier. // See https://github.com/ulid/spec . // NB: ULIDs can leak timing information, if you make them public, because // you can infer the rate at which some resource is being created, like // users or business transactions. // (https://news.ycombinator.com/item?id=14526173) pub fn ulid() string { return ulid_at_millisecond(time.utc().unix_time_milli()) } // ulid_at_millisecond does the same as `ulid` but takes a custom Unix millisecond timestamp via `unix_time_milli`. pub fn ulid_at_millisecond(unix_time_milli u64) string { buflen := 26 mut buf := unsafe { malloc(27) } mut t := unix_time_milli mut i := 9 for i >= 0 { unsafe { buf[i] = rand.ulid_encoding[t & 0x1F] } t = t >> 5 i-- } // first rand set mut x := get_default().u64() i = 10 for i < 19 { unsafe { buf[i] = rand.ulid_encoding[x & 0x1F] } x = x >> 5 i++ } // second rand set x = get_default().u64() for i < 26 { unsafe { buf[i] = rand.ulid_encoding[x & 0x1F] } x = x >> 5 i++ } unsafe { buf[26] = 0 return buf.vstring_with_len(buflen) } }