/********************************************************************** * * f32 to string * * Copyright (c) 2019-2020 Dario Deledda. All rights reserved. * Use of this source code is governed by an MIT license * that can be found in the LICENSE file. * * This file contains the f64 to string functions * * These functions are based on the work of: * Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN * Conference on Programming Language Design and ImplementationJune 2018 * Pages 270–282 https://doi.org/10.1145/3192366.3192369 * * inspired by the Go version here: * https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea * **********************************************************************/ module ftoa struct Uint128 { mut: lo u64 = u64(0) hi u64 = u64(0) } // dec64 is a floating decimal type representing m * 10^e. struct Dec64 { mut: m u64 = 0 e int = 0 } // support union for convert f64 to u64 union Uf64 { mut: f f64 = 0 u u64 } // pow of ten table used by n_digit reduction const( ten_pow_table_64 = [ u64(1), u64(10), u64(100), u64(1000), u64(10000), u64(100000), u64(1000000), u64(10000000), u64(100000000), u64(1000000000), u64(10000000000), u64(100000000000), u64(1000000000000), u64(10000000000000), u64(100000000000000), u64(1000000000000000), u64(10000000000000000), u64(100000000000000000), u64(1000000000000000000), u64(10000000000000000000), ] ) /****************************************************************************** * * Conversion Functions * ******************************************************************************/ const( mantbits64 = u32(52) expbits64 = u32(11) bias64 = u32(1023) // f64 exponent bias maxexp64 = 2047 ) fn (d Dec64) get_string_64(neg bool, i_n_digit int) string { n_digit := i_n_digit + 1 mut out := d.m mut out_len := decimal_len_64(out) out_len_original := out_len mut buf := [byte(0)].repeat(out_len + 6 + 1 +1) // sign + mant_len + . + e + e_sign + exp_len(2) + \0 mut i := 0 if neg { buf[i]=`-` i++ } mut disp := 0 if out_len <= 1 { disp = 1 } if n_digit < out_len { //println("orig: ${out_len_original}") out += ten_pow_table_64[out_len - n_digit] + 1 // round to up out /= ten_pow_table_64[out_len - n_digit] out_len = n_digit } y := i + out_len mut x := 0 for x < (out_len-disp-1) { buf[y - x] = `0` + byte(out%10) out /= 10 i++ x++ } if out_len >= 1 { buf[y - x] = `.` x++ i++ } if y-x >= 0 { buf[y - x] = `0` + byte(out%10) i++ } /* x=0 for x 0 { buf[i]=`0` + byte(d0) i++ } buf[i]=`0` + byte(d1) i++ buf[i]=`0` + byte(d2) i++ buf[i]=0 /* x=0 for x mantbits64 { return d, false } shift := mantbits64 - e mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1 //mant := i_mant | (1 << mantbits64) // implicit 1 d.m = mant >> shift if (d.m << shift) != mant { return d, false } for (d.m % 10) == 0 { d.m /= 10 d.e++ } return d, true } fn f64_to_decimal(mant u64, exp u64) Dec64 { mut e2 := 0 mut m2 := u64(0) if exp == 0 { // We subtract 2 so that the bounds computation has // 2 additional bits. e2 = 1 - bias64 - mantbits64 - 2 m2 = mant } else { e2 = int(exp) - bias64 - mantbits64 - 2 m2 = (u64(1)<= 0 { // This expression is slightly faster than max(0, log10Pow2(e2) - 1). q := log10_pow2(e2) - bool_to_u32(e2 > 3) e10 = int(q) k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1 i := -e2 + int(q) + k mul := pow5_inv_split_64[q] vr = mul_shift_64(u64(4) * m2 , mul, i) vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, i) vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i) if q <= 21 { // This should use q <= 22, but I think 21 is also safe. // Smaller values may still be safe, but it's more // difficult to reason about them. Only one of mp, mv, // and mm can be a multiple of 5, if any. if mv%5 == 0 { vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q) } else if accept_bounds { // Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q // <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q // <=> true && pow5Factor64(mm) >= q, since e2 >= q. vm_is_trailing_zeros = multiple_of_power_of_five_64(mv-1-mm_shift, q) } else if multiple_of_power_of_five_64(mv+2, q) { vp-- } } } else { // This expression is slightly faster than max(0, log10Pow5(-e2) - 1). q := log10_pow5(-e2) - bool_to_u32(-e2 > 1) e10 = int(q) + e2 i := -e2 - int(q) k := pow5_bits(i) - pow5_num_bits_64 mut j := int(q) - k mul := pow5_split_64[i] vr = mul_shift_64(u64(4) * m2 , mul, j) vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, j) vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j) if q <= 1 { // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. // mv = 4 * m2, so it always has at least two trailing 0 bits. vr_is_trailing_zeros = true if accept_bounds { // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. vm_is_trailing_zeros = (mm_shift == 1) } else { // mp = mv + 2, so it always has at least one trailing 0 bit. vp-- } } else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here. // We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1 // <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1 // <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) // <=> (mv & ((1 << (q - 1)) - 1)) == 0 // We also need to make sure that the left shift does not overflow. vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1) } } // Step 4: Find the shortest decimal representation // in the interval of valid representations. mut removed := 0 mut last_removed_digit := byte(0) mut out := u64(0) // On average, we remove ~2 digits. if vm_is_trailing_zeros || vr_is_trailing_zeros { // General case, which happens rarely (~0.7%). for { vp_div_10 := vp / 10 vm_div_10 := vm / 10 if vp_div_10 <= vm_div_10 { break } vm_mod_10 := vm % 10 vr_div_10 := vr / 10 vr_mod_10 := vr % 10 vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0 vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0) last_removed_digit = byte(vr_mod_10) vr = vr_div_10 vp = vp_div_10 vm = vm_div_10 removed++ } if vm_is_trailing_zeros { for { vm_div_10 := vm / 10 vm_mod_10 := vm % 10 if vm_mod_10 != 0 { break } vp_div_10 := vp / 10 vr_div_10 := vr / 10 vr_mod_10 := vr % 10 vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0) last_removed_digit = byte(vr_mod_10) vr = vr_div_10 vp = vp_div_10 vm = vm_div_10 removed++ } } if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 { // Round even if the exact number is .....50..0. last_removed_digit = 4 } out = vr // We need to take vr + 1 if vr is outside bounds // or we need to round up. if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 { out++ } } else { // Specialized for the common case (~99.3%). // Percentages below are relative to this. mut round_up := false for vp / 100 > vm / 100 { // Optimization: remove two digits at a time (~86.2%). round_up = (vr % 100) >= 50 vr /= 100 vp /= 100 vm /= 100 removed += 2 } // Loop iterations below (approximately), without optimization above: // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% // Loop iterations below (approximately), with optimization above: // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% for vp / 10 > vm / 10 { round_up = (vr % 10) >= 5 vr /= 10 vp /= 10 vm /= 10 removed++ } // We need to take vr + 1 if vr is outside bounds // or we need to round up. out = vr + bool_to_u64(vr == vm || round_up) } return Dec64{m: out, e: e10 + removed} } // f64_to_str return a string in scientific notation with max n_digit after the dot pub fn f64_to_str(f f64, n_digit int) string { mut u1 := Uf64{} u1.f = f u := u1.u neg := (u>>(mantbits64+expbits64)) != 0 mant := u & ((u64(1)<> mantbits64) & ((u64(1)<