// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. // Package sha1 implements the SHA-1 hash algorithm as defined in RFC 3174. // SHA-1 is cryptographically broken and should not be used for secure // applications. // Adapted from: https://github.com/golang/go/blob/master/src/crypto/sha1 module sha1 import math import encoding.binary const( // The size of a SHA-1 checksum in bytes. Size = 20 // The blocksize of SHA-1 in bytes. BlockSize = 64 ) const ( Chunk = 64 Init0 = 0x67452301 Init1 = 0xEFCDAB89 Init2 = 0x98BADCFE Init3 = 0x10325476 Init4 = 0xC3D2E1F0 ) // digest represents the partial evaluation of a checksum. struct Digest { mut: h []u32 x []byte nx int len u64 } fn (d mut Digest) reset() { d.x = [byte(0); Chunk] d.h = [u32(0); 5] d.h[0] = u32(Init0) d.h[1] = u32(Init1) d.h[2] = u32(Init2) d.h[3] = u32(Init3) d.h[4] = u32(Init4) d.nx = 0 d.len = u64(0) } // new returns a new Digest (implementing hash.Hash) computing the SHA1 checksum. pub fn new() &Digest { mut d := &Digest{} d.reset() return d } pub fn (d mut Digest) write(p []byte) ?int { nn := p.len d.len += u64(nn) if d.nx > 0 { n := int(math.min(f64(d.x.len), f64(p.len))) for i:=0; i<n; i++ { d.x.set(i+d.nx, p[i]) } d.nx += n if d.nx == Chunk { block(d, d.x) d.nx = 0 } if n >= p.len { p = []byte } else { p = p.right(n) } } if p.len >= Chunk { n := p.len &~ (Chunk - 1) block(d, p.left(n)) if n >= p.len { p = []byte } else { p = p.right(n) } } if p.len > 0 { d.nx = int(math.min(f64(d.x.len), f64(p.len))) for i:=0; i<d.nx; i++ { d.x.set(i, p[i]) } } return nn } pub fn (d &Digest) sum(b_in mut []byte) []byte { // Make a copy of d so that caller can keep writing and summing. mut d0 := *d hash := d0.checksum() for b in hash { b_in << b } return *b_in } fn (d mut Digest) checksum() []byte { mut len := d.len // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. mut tmp := [byte(0); 64] tmp[0] = 0x80 if int(len)%64 < 56 { d.write(tmp.left(56-int(len)%64)) } else { d.write(tmp.left(64+56-int(len)%64)) } // Length in bits. len <<= u64(3) binary.big_endian_put_u64(tmp, len) d.write(tmp.left(8)) mut digest := [byte(0); Size] binary.big_endian_put_u32(digest, d.h[0]) binary.big_endian_put_u32(digest.right(4), d.h[1]) binary.big_endian_put_u32(digest.right(8), d.h[2]) binary.big_endian_put_u32(digest.right(12), d.h[3]) binary.big_endian_put_u32(digest.right(16), d.h[4]) return digest } // Sum returns the SHA-1 checksum of the data. pub fn sum(data []byte) []byte { mut d := new() d.write(data) return d.checksum() } fn block(dig &Digest, p []byte) { // For now just use block_generic until we have specific // architecture optimized versions block_generic(dig, p) } pub fn (d &Digest) size() int { return Size } pub fn (d &Digest) block_size() int { return BlockSize }