/********************************************************************** * * Sokol 3d cube multishader demo * * Copyright (c) 2021 Dario Deledda. All rights reserved. * Use of this source code is governed by an MIT license * that can be found in the LICENSE file. * * HOW TO COMPILE SHADERS: * Run `v shader .` in this directory to compile the shaders. * For more info and help with shader compilation see `docs.md` and `v help shader`. * * TODO: * - frame counter **********************************************************************/ import gg import gg.m4 import gx import math import sokol.gfx //import sokol.sgl import time const ( win_width = 800 win_height = 800 bg_color = gx.white num_inst = 16384 ) struct App { mut: gg &gg.Context = unsafe { nil } texture gfx.Image init_flag bool frame_count int mouse_x int = -1 mouse_y int = -1 mouse_down bool // glsl cube_pip_glsl gfx.Pipeline cube_bind gfx.Bindings pipe map[string]gfx.Pipeline bind map[string]gfx.Bindings // time ticks i64 // instances inst_pos [num_inst]m4.Vec4 // camera camera_x f32 camera_z f32 } /****************************************************************************** * GLSL Include and functions ******************************************************************************/ #flag -I @VMODROOT/. #include "rt_glsl_instancing.h" # Should be generated with `v shader .` (see the instructions at the top of this file) fn C.instancing_shader_desc(gfx.Backend) &gfx.ShaderDesc /****************************************************************************** * Texture functions ******************************************************************************/ fn create_texture(w int, h int, buf byteptr) gfx.Image{ sz := w * h * 4 mut img_desc := gfx.ImageDesc{ width: w height: h num_mipmaps: 0 min_filter: .linear mag_filter: .linear //usage: .dynamic wrap_u: .clamp_to_edge wrap_v: .clamp_to_edge label: &u8(0) d3d11_texture: 0 } // comment if .dynamic is enabled img_desc.data.subimage[0][0] = gfx.Range{ ptr: buf size: usize(sz) } sg_img := gfx.make_image(&img_desc) return sg_img } fn destroy_texture(sg_img gfx.Image){ gfx.destroy_image(sg_img) } // Use only if usage: .dynamic is enabled fn update_text_texture(sg_img gfx.Image, w int, h int, buf byteptr){ sz := w * h * 4 mut tmp_sbc := gfx.ImageData{} tmp_sbc.subimage[0][0] = gfx.Range{ ptr: buf size: usize(sz) } gfx.update_image(sg_img, &tmp_sbc) } /****************************************************************************** * Draw functions ****************************************************************************** Cube vertex buffer with packed vertex formats for color and texture coords. Note that a vertex format which must be portable across all backends must only use the normalized integer formats (BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted to floating point formats in the vertex shader inputs. The reason is that D3D11 cannot convert from non-normalized formats to floating point inputs (only to integer inputs), and WebGL2 / GLES2 don't support integer vertex shader inputs. */ struct Vertex_t { x f32 y f32 z f32 color u32 //u u16 // for compatibility with D3D11 //v u16 // for compatibility with D3D11 u f32 v f32 } // march shader init fn init_cube_glsl_i(mut app App) { /* cube vertex buffer */ //d := u16(32767) // for compatibility with D3D11, 32767 stand for 1 d := f32(1.0) c := u32(0xFFFFFF_FF) // color RGBA8 vertices := [ // Face 0 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, d}, Vertex_t{-1.0, 1.0, -1.0, c, 0, d}, // Face 1 Vertex_t{-1.0, -1.0, 1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, 1.0, 1.0, c, 0, d}, // Face 2 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, -1.0, c, d, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, -1.0, 1.0, c, 0, d}, // Face 3 Vertex_t{ 1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, 1.0, c, 0, d}, // Face 4 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, -1.0, c, 0, d}, // Face 5 Vertex_t{-1.0, 1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, 1.0, -1.0, c, 0, d}, ] mut vert_buffer_desc := gfx.BufferDesc{label: c'cube-vertices'} unsafe {vmemset(&vert_buffer_desc, 0, int(sizeof(vert_buffer_desc)))} vert_buffer_desc.size = usize(vertices.len * int(sizeof(Vertex_t))) vert_buffer_desc.data = gfx.Range{ ptr: vertices.data size: usize(vertices.len * int(sizeof(Vertex_t))) } vert_buffer_desc.@type = .vertexbuffer vbuf := gfx.make_buffer(&vert_buffer_desc) /* create an instance buffer for the cube */ mut inst_buffer_desc := gfx.BufferDesc{label: c'instance-data'} unsafe {vmemset(&inst_buffer_desc, 0, int(sizeof(inst_buffer_desc)))} inst_buffer_desc.size = usize(num_inst * int(sizeof(m4.Vec4))) inst_buffer_desc.@type = .vertexbuffer inst_buffer_desc.usage = .stream inst_buf := gfx.make_buffer(&inst_buffer_desc) /* create an index buffer for the cube */ indices := [ u16(0), 1, 2, 0, 2, 3, 6, 5, 4, 7, 6, 4, 8, 9, 10, 8, 10, 11, 14, 13, 12, 15, 14, 12, 16, 17, 18, 16, 18, 19, 22, 21, 20, 23, 22, 20 ] mut index_buffer_desc := gfx.BufferDesc{label: c'cube-indices'} unsafe {vmemset(&index_buffer_desc, 0, int(sizeof(index_buffer_desc)))} index_buffer_desc.size = usize(indices.len * int(sizeof(u16))) index_buffer_desc.data = gfx.Range{ ptr: indices.data size: usize(indices.len * int(sizeof(u16))) } index_buffer_desc.@type = .indexbuffer ibuf := gfx.make_buffer(&index_buffer_desc) /* create shader */ shader := gfx.make_shader(C.instancing_shader_desc(C.sg_query_backend())) mut pipdesc := gfx.PipelineDesc{} unsafe {vmemset(&pipdesc, 0, int(sizeof(pipdesc)))} pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t)) // the constants [C.ATTR_vs_m_pos, C.ATTR_vs_m_color0, C.ATTR_vs_m_texcoord0] are generated by sokol-shdc pipdesc.layout.attrs[C.ATTR_vs_i_pos ].format = .float3 // x,y,z as f32 pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0 pipdesc.layout.attrs[C.ATTR_vs_i_color0 ].format = .ubyte4n // color as u32 pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0 pipdesc.layout.attrs[C.ATTR_vs_i_texcoord0].format = .float2 // u,v as f32 pipdesc.layout.attrs[C.ATTR_vs_i_pos ].buffer_index = 0 // instancing // the constant ATTR_vs_i_inst_pos is generated by sokol-shdc pipdesc.layout.buffers[1].stride = int(sizeof(m4.Vec4)) pipdesc.layout.buffers[1].step_func = .per_instance // we will pass a single parameter for each instance!! pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].format = .float4 pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].buffer_index = 1 pipdesc.shader = shader pipdesc.index_type = .uint16 pipdesc.depth = gfx.DepthState{ write_enabled: true compare: .less_equal } pipdesc.cull_mode = .back pipdesc.label = "glsl_shader pipeline".str mut bind := gfx.Bindings{} unsafe {vmemset(&bind, 0, int(sizeof(bind)))} bind.vertex_buffers[0] = vbuf // vertex buffer bind.vertex_buffers[1] = inst_buf // instance buffer bind.index_buffer = ibuf bind.fs_images[C.SLOT_tex] = app.texture app.bind['inst'] = bind app.pipe['inst'] = gfx.make_pipeline(&pipdesc) println("GLSL March init DONE!") } fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4{ proj := m4.perspective(60, w/h, 0.01, 4000.0) view := m4.look_at(m4.Vec4{e:[f32(0.0),100,6,0]!}, m4.Vec4{e:[f32(0),0,0,0]!}, m4.Vec4{e:[f32(0),1.0,0,0]!}) view_proj := view * proj rxm := m4.rotate(m4.rad(rx), m4.Vec4{e:[f32(1),0,0,0]!}) rym := m4.rotate(m4.rad(ry), m4.Vec4{e:[f32(0),1,0,0]!}) model := rym * rxm scale_m := m4.scale(m4.Vec4{e:[in_scale, in_scale, in_scale, 1]!}) res := (scale_m * model)* view_proj return res } // triangles draw fn draw_cube_glsl_i(mut app App){ if app.init_flag == false { return } ws := gg.window_size_real_pixels() //ratio := f32(ws.width) / ws.height dw := f32(ws.width / 2) dh := f32(ws.height / 2) rot := [f32(app.mouse_y), f32(app.mouse_x)] tr_matrix := calc_tr_matrices(dw, dh, rot[0], rot[1], 2.3) gfx.apply_pipeline(app.pipe['inst']) gfx.apply_bindings(app.bind['inst']) //*************** // Instancing //*************** // passing the instancing to the vs time_ticks := f32(time.ticks() - app.ticks) / 1000 cube_size := 2 sz := 128 // field size dimension cx := 64 // x center for the cubes cz := 64 // z center for the cubes //frame := (app.frame_count/4) % 100 for index in 0..num_inst { x := f32(index % sz) z := f32(index / sz) // simply waves y := f32(math.cos((x+time_ticks)/2.0)*math.sin(z/2.0))*2 // sombrero function //r := ((x-cx)*(x-cx)+(z-cz)*(z-cz))/(sz/2) //y := f32(math.sin(r+time_ticks)*4.0) spare_param := f32(index % 10) app.inst_pos[index] = m4.Vec4{e:[f32((x - cx - app.camera_x) * cube_size),y ,f32( (z - cz - app.camera_z) * cube_size),spare_param]!} } range := gfx.Range{ ptr: unsafe { &app.inst_pos } size: usize(num_inst * int(sizeof(m4.Vec4))) } gfx.update_buffer(app.bind['inst'].vertex_buffers[1], &range ) // Uniforms // *** vertex shadeer uniforms *** // passing the view matrix as uniform // res is a 4x4 matrix of f32 thus: 4*16 byte of size vs_uniforms_range := gfx.Range{ ptr: unsafe { &tr_matrix } size: usize(4 * 16) } gfx.apply_uniforms(.vs, C.SLOT_vs_params_i, &vs_uniforms_range) /* // *** fragment shader uniforms *** time_ticks := f32(time.ticks() - app.ticks) / 1000 mut tmp_fs_params := [ f32(ws.width), ws.height * ratio, // x,y resolution to pass to FS 0,0, // dont send mouse position //app.mouse_x, // mouse x //ws.height - app.mouse_y*2, // mouse y scaled time_ticks, // time as f32 app.frame_count, // frame count 0,0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h ]! fs_uniforms_range := gfx.Range{ ptr: unsafe { &tmp_fs_params } size: usize(sizeof(tmp_fs_params)) } gfx.apply_uniforms(.fs, C.SLOT_fs_params, &fs_uniforms_range) */ // 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw for num_inst times gfx.draw(0, (3 * 2) * 6, num_inst) } fn draw_start_glsl(app App){ if app.init_flag == false { return } ws := gg.window_size_real_pixels() //ratio := f32(ws.width) / ws.height //dw := f32(ws.width / 2) //dh := f32(ws.height / 2) gfx.apply_viewport(0, 0, ws.width, ws.height, true) } fn draw_end_glsl(app App){ gfx.end_pass() gfx.commit() } fn frame(mut app App) { ws := gg.window_size_real_pixels() // clear mut color_action := gfx.ColorAttachmentAction{ action: .clear value: gfx.Color{ r: 0.0 g: 0.0 b: 0.0 a: 1.0 } } mut pass_action := gfx.PassAction{} pass_action.colors[0] = color_action gfx.begin_default_pass(&pass_action, ws.width, ws.height) draw_start_glsl(app) draw_cube_glsl_i(mut app) draw_end_glsl(app) app.frame_count++ } /****************************************************************************** * Init / Cleanup ******************************************************************************/ fn my_init(mut app App) { // create chessboard texture 256*256 RGBA w := 256 h := 256 sz := w * h * 4 tmp_txt := unsafe { malloc(sz) } mut i := 0 for i < sz { unsafe { y := (i >> 0x8) >> 5 // 8 cell x := (i & 0xFF) >> 5 // 8 cell // upper left corner if x == 0 && y == 0 { tmp_txt[i + 0] = u8(0xFF) tmp_txt[i + 1] = u8(0) tmp_txt[i + 2] = u8(0) tmp_txt[i + 3] = u8(0xFF) } // low right corner else if x == 7 && y == 7 { tmp_txt[i + 0] = u8(0) tmp_txt[i + 1] = u8(0xFF) tmp_txt[i + 2] = u8(0) tmp_txt[i + 3] = u8(0xFF) } else { col := if ((x + y) & 1) == 1 { 0xFF } else { 128 } tmp_txt[i + 0] = u8(col) // red tmp_txt[i + 1] = u8(col) // green tmp_txt[i + 2] = u8(col) // blue tmp_txt[i + 3] = u8(0xFF) // alpha } i += 4 } } unsafe { app.texture = create_texture(w, h, tmp_txt) free(tmp_txt) } // glsl init_cube_glsl_i(mut app) app.init_flag = true } /****************************************************************************** * events handling ******************************************************************************/ fn my_event_manager(mut ev gg.Event, mut app App) { if ev.typ == .mouse_down{ app.mouse_down = true } if ev.typ == .mouse_up{ app.mouse_down = false } if app.mouse_down == true && ev.typ == .mouse_move { app.mouse_x = int(ev.mouse_x) app.mouse_y = int(ev.mouse_y) } if ev.typ == .touches_began || ev.typ == .touches_moved { if ev.num_touches > 0 { touch_point := ev.touches[0] app.mouse_x = int(touch_point.pos_x) app.mouse_y = int(touch_point.pos_y) } } // keyboard if ev.typ == .key_down { step := f32(1.0) match ev.key_code { .w { app.camera_z += step } .s { app.camera_z -= step } .a { app.camera_x -= step } .d { app.camera_x += step } else{} } } } /****************************************************************************** * Main ******************************************************************************/ [console] // is needed for easier diagnostics on windows fn main(){ // App init mut app := &App{ gg: 0 } app.gg = gg.new_context( width: win_width height: win_height create_window: true window_title: 'Instancing Cube' user_data: app bg_color: bg_color frame_fn: frame init_fn: my_init event_fn: my_event_manager ) app.ticks = time.ticks() app.gg.run() }