// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module glm import math /* #flag -lmyglm # f32* myglm_ortho(f32, f32, f32, f32); # f32* myglm_translate(f32, f32, f32); */ // # f32* myglm_rotate(f32 *m, f32 angle, f32, f32, f32); // # f32* myglm_perspective(f32, f32, f32, f32); // # f32* myglm_look_at(glm__Vec3, glm__Vec3, glm__Vec3); // # glm__Vec3 myglm_mult(glm__Vec3, glm__Vec3); // # glm__Vec3 myglm_cross(glm__Vec3, glm__Vec3); // # glm__Vec3 myglm_normalize(glm__Vec3); pub struct Mat4 { pub: data &f32 } struct Vec2 { x f32 y f32 } struct Vec3 { x f32 y f32 z f32 } pub fn vec3(x, y, z f32) Vec3 { res := Vec3 { x: x, y: y, z: z, } return res } fn mat4(f &f32) Mat4 { res := Mat4 { data: f } return res } pub fn (v Vec3) str() string { return 'Vec3{ $v.x, $v.y, $v.z }' } pub fn (v Vec2) str() string { return 'Vec3{ $v.x, $v.y }' } pub fn (m Mat4) str() string { mut s := '[ ' for i in 0..4 { if i != 0 { s += ' ' } for j in 0..4 { val := m.data[i * 4 + j] s += '${val:.2f} ' } if i != 3 { s += '\n' } } s += ']' return s } fn vec2(x, y int) Vec2 { res := Vec2 { x: x, y: y, } return res } fn (a Vec3) add(b Vec3) Vec3 { res := Vec3 { x: a.x + b.x, y: a.y + b.y, z: a.z + b.z, } return res } fn (a Vec3) sub(b Vec3) Vec3 { res := Vec3 { x: a.x - b.x, y: a.y - b.y, z: a.z - b.z, } return res } // fn (a Vec3) mult(b Vec3) Vec3 { // # return myglm_mult(a,b); // } fn (a Vec3) mult_scalar(b f32) Vec3 { res := Vec3 { x: a.x * b, y: a.y * b, z: a.z * b, } return res } fn (a Vec3) print() { x := a.x y := a.y z := a.z C.printf('vec3{%f,%f,%f}\n',x,y,z) // println('vec3{$x,$y,$z}') } /* fn rotate(m Mat4, angle f32, vec Vec3) Mat4 { // # t_mat4 m; // println('rotate done') # return glm__mat4( myglm_rotate(m.data, angle, vec.x,vec.y,vec.z) ); return Mat4{} } */ fn f32_calloc(n int) &f32 { return &f32(vcalloc(n * sizeof(f32))) } // fn translate(vec Vec3) *f32 { pub fn translate(m Mat4, v Vec3) Mat4 { // # return glm__mat4(myglm_translate(vec.x,vec.y,vec.z) ); a := m.data mut out := f32_calloc(16) x := v.x y := v.y z := v.z a00 := a[0]a01 := a[1]a02 := a[2]a03 := a[3] a10 := a[4]a11 := a[5]a12 := a[6]a13 := a[7] a20 := a[8]a21 := a[9]a22 := a[10]a23 := a[11] out[0] = a00 out[1] = a01 out[2] = a02 out[3] = a03 out[4] = a10 out[5] = a11 out[6] = a12 out[7] = a13 out[8] = a20 out[9] = a21 out[10] = a22 out[11] = a23 out[12] = a00 * x + a10 * y + a20 * z + a[12] out[13] = a01 * x + a11 * y + a21 * z + a[13] out[14] = a02 * x + a12 * y + a22 * z + a[14] out[15] = a03 * x + a13 * y + a23 * z + a[15] return mat4(out) } /* fn normalize(vec Vec3) Vec3 { # return myglm_normalize(vec); return Vec3{} } */ // https://github.com/g-truc/glm/blob/0ceb2b755fb155d593854aefe3e45d416ce153a4/glm/ext/matrix_clip_space.inl pub fn ortho(left, right, bottom, top f32) Mat4 { //println('glm ortho($left, $right, $bottom, $top)') // mat<4, 4, T, defaultp> Result(static_cast<T>(1)); n := 16 mut res := f32_calloc(n) res[0] = 2.0 / (right - left) res[5] = 2.0 / (top - bottom) res[10] = 1.0 res[12] = - (right + left) / (right - left) res[13] = - (top + bottom) / (top - bottom) res[15] = 1.0 return mat4(res) } // fn scale(a *f32, v Vec3) *f32 { pub fn scale(m Mat4, v Vec3) Mat4 { a := m.data mut out := f32_calloc(16) x := v.x y := v.y z := v.z out[0] = a[0] * v.x out[1] = a[1] * x out[2] = a[2] * x out[3] = a[3] * x out[4] = a[4] * y out[5] = a[5] * y out[6] = a[6] * y out[7] = a[7] * y out[8] = a[8] * z out[9] = a[9] * z out[10] = a[10] * z out[11] = a[11] * z out[12] = a[12] out[13] = a[13] out[14] = a[14] out[15] = a[15] return mat4(out) } // fn rotate_z(a *f32, rad f32) *f32 { pub fn rotate_z(m Mat4, rad f32) Mat4 { a := m.data mut out := f32_calloc(16) s := math.sin(rad) c := math.cos(rad) a00 := a[0] a01 := a[1] a02 := a[2] a03 := a[3] a10 := a[4] a11 := a[5] a12 := a[6] a13 := a[7] out[8] = a[8] out[9] = a[9] out[10] = a[10] out[11] = a[11] out[12] = a[12] out[13] = a[13] out[14] = a[14] out[15] = a[15] // Perform axis-specific matrix multiplication out[0] = a00 * c + a10 * s out[1] = a01 * c + a11 * s out[2] = a02 * c + a12 * s out[3] = a03 * c + a13 * s out[4] = a10 * c - a00 * s out[5] = a11 * c - a01 * s out[6] = a12 * c - a02 * s out[7] = a13 * c - a03 * s return mat4(out) } pub fn identity() Mat4 { // 1 0 0 0 // 0 1 0 0 // 0 0 1 0 // 0 0 0 1 n := 16 mut res := f32_calloc(sizeof(f32) * n) res[0] = 1 res[5] = 1 res[10] = 1 res[15] = 1 return mat4(res) } // returns *f32 without allocation pub fn identity2(res mut &f32) { res[0] = 1 res[5] = 1 res[10] = 1 res[15] = 1 // # f32 f[16]={0};// for (int i =0;i<16;i++) // # printf("!!%d\n", f[0]); // # glm__identity2(&f); // # gl__Shader_set_mat4(shader, tos2("projection"), f) ; } pub fn identity3() []f32 { res := [1.0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ] ! return res } // https://github.com/toji/gl-matrix/blob/1549cf21dfa14a2bc845993485343d519cf064fe/src/gl-matrix/mat4.js fn ortho_js(left, right, bottom, top f32) &f32 { // mynear := 1 // myfar := 1 lr := 1.0 / (left - right) bt := 1.0 / (bottom - top) nf := 1.0 / 1.0// (mynear -myfar) mut out := &f32(0) unsafe { out = &f32( malloc (sizeof(f32) * 16)) } out[0] = -2.0 * lr out[1] = 0 out[2] = 0 out[3] = 0 out[4] = 0 out[5] = -2.0 * bt out[6] = 0 out[7] = 0 out[8] = 0 out[9] = 0 out[10] = 2.0 * nf out[11] = 0 out[12] = (left + right) * lr out[13] = (top + bottom) * bt out[14] = 1.0 * nf//(far + near) * nf; out[15] = 1 return out //f := 0.0 //return &f } // fn ortho_old(a, b, c, d f32) *f32 { // # return myglm_ortho(a,b,c,d); // } fn cross(a, b Vec3) Vec3 { // # return myglm_cross(a,b); return Vec3{} } /* fn perspective(degrees f32, ratio f32, a, b f32) Mat4 { // println('lang per degrees=$degrees ratio=$ratio a=$a b=$b') // # printf("lang pers degrees=%f ratio=%f a=%f b=%f\n", degrees, ratio, a,b); # return glm__mat4( myglm_perspective(degrees, ratio, a,b) ) ; return Mat4{} } fn look_at(eye, center, up Vec3) Mat4 { # return glm__mat4( myglm_look_at(eye, center, up) ) ; return Mat4{} } */