// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module musl import math.bits import rand.seed import rand.constants // MuslRNG ported from https://git.musl-libc.org/cgit/musl/tree/src/prng/rand_r.c pub struct MuslRNG { mut: state u32 = seed.time_seed_32() } // seed sets the current random state based on `seed_data`. // seed expects `seed_data` to be only one `u32`. pub fn (mut rng MuslRNG) seed(seed_data []u32) { if seed_data.len != 1 { eprintln('MuslRNG needs only one unsigned 32-bit integer as a seed.') exit(1) } rng.state = seed_data[0] } // temper returns a tempered value based on `prev` value. [inline] fn temper(prev u32) u32 { mut x := prev x ^= x >> 11 x ^= (x << 7) & 0x9D2C5680 x ^= (x << 15) & 0xEFC60000 x ^= (x >> 18) return x } // u32 returns a pseudorandom 32-bit unsigned integer (`u32`). [inline] pub fn (mut rng MuslRNG) u32() u32 { rng.state = rng.state * 1103515245 + 12345 // We are not dividing by 2 (or shifting right by 1) // because we want all 32-bits of random data return temper(rng.state) } // u64 returns a pseudorandom 64-bit unsigned integer (`u64`). [inline] pub fn (mut rng MuslRNG) u64() u64 { return u64(rng.u32()) | (u64(rng.u32()) << 32) } // u32n returns a pseudorandom 32-bit unsigned integer `u32` in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) u32n(max u32) u32 { if max == 0 { eprintln('max must be positive integer.') exit(1) } // Check SysRNG in system_rng.c.v for explanation bit_len := bits.len_32(max) if bit_len == 32 { for { value := rng.u32() if value < max { return value } } } else { mask := (u32(1) << (bit_len + 1)) - 1 for { value := rng.u32() & mask if value < max { return value } } } return u32(0) } // u64n returns a pseudorandom 64-bit unsigned integer (`u64`) in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) u64n(max u64) u64 { if max == 0 { eprintln('max must be positive integer.') exit(1) } bit_len := bits.len_64(max) if bit_len == 64 { for { value := rng.u64() if value < max { return value } } } else { mask := (u64(1) << (bit_len + 1)) - 1 for { value := rng.u64() & mask if value < max { return value } } } return u64(0) } // u32_in_range returns a pseudorandom 32-bit unsigned integer (`u32`) in range `[min, max)`. [inline] pub fn (mut rng MuslRNG) u32_in_range(min u64, max u64) u64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.u32n(u32(max - min)) } // u64_in_range returns a pseudorandom 64-bit unsigned integer (`u64`) in range `[min, max)`. [inline] pub fn (mut rng MuslRNG) u64_in_range(min u64, max u64) u64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.u64n(max - min) } // int returns a 32-bit signed (possibly negative) integer (`int`). [inline] pub fn (mut rng MuslRNG) int() int { return int(rng.u32()) } // i64 returns a 64-bit signed (possibly negative) integer (`i64`). [inline] pub fn (mut rng MuslRNG) i64() i64 { return i64(rng.u64()) } // int31 returns a 31-bit positive pseudorandom integer (`int`). [inline] pub fn (mut rng MuslRNG) int31() int { return int(rng.u32() >> 1) } // int63 returns a 63-bit positive pseudorandom integer (`i64`). [inline] pub fn (mut rng MuslRNG) int63() i64 { return i64(rng.u64() >> 1) } // intn returns a 32-bit positive int in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) intn(max int) int { if max <= 0 { eprintln('max has to be positive.') exit(1) } return int(rng.u32n(u32(max))) } // i64n returns a 64-bit positive integer `i64` in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) i64n(max i64) i64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return i64(rng.u64n(u64(max))) } // int_in_range returns a 32-bit positive integer `int` in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) int_in_range(min int, max int) int { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.intn(max - min) } // i64_in_range returns a 64-bit positive integer `i64` in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) i64_in_range(min i64, max i64) i64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.i64n(max - min) } // f32 returns a pseudorandom `f32` value in range `[0, 1)`. [inline] pub fn (mut rng MuslRNG) f32() f32 { return f32(rng.u32()) / constants.max_u32_as_f32 } // f64 returns a pseudorandom `f64` value in range `[0, 1)`. [inline] pub fn (mut rng MuslRNG) f64() f64 { return f64(rng.u64()) / constants.max_u64_as_f64 } // f32n returns a pseudorandom `f32` value in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) f32n(max f32) f32 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f32() * max } // f64n returns a pseudorandom `f64` value in range `[0, max)`. [inline] pub fn (mut rng MuslRNG) f64n(max f64) f64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f64() * max } // f32_in_range returns a pseudorandom `f32` in range `[min, max)`. [inline] pub fn (mut rng MuslRNG) f32_in_range(min f32, max f32) f32 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.f32n(max - min) } // i64_in_range returns a pseudorandom `i64` in range `[min, max)`. [inline] pub fn (mut rng MuslRNG) f64_in_range(min f64, max f64) f64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.f64n(max - min) }