// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strconv /* Note: A V string should be/is immutable from the point of view of V user programs after it is first created. A V string is also slightly larger than the equivalent C string because the V string also has an integer length attached. This tradeoff is made, since V strings are created just *once*, but potentially used *many times* over their lifetime. The V string implementation uses a struct, that has a .str field, which points to a C style 0 terminated memory block. Although not strictly necessary from the V point of view, that additional 0 is *very useful for C interoperability*. The V string implementation also has an integer .len field, containing the length of the .str field, excluding the terminating 0 (just like the C's strlen(s) would do). The 0 ending of .str, and the .len field, mean that in practice: a) a V string s can be used very easily, wherever a C string is needed, just by passing s.str, without a need for further conversion/copying. b) where strlen(s) is needed, you can just pass s.len, without having to constantly recompute the length of s *over and over again* like some C programs do. This is because V strings are immutable and so their length does not change. Ordinary V code *does not need* to be concerned with the additional 0 in the .str field. The 0 *must* be put there by the low level string creating functions inside this module. Failing to do this will lead to programs that work most of the time, when used with pure V functions, but fail in strange ways, when used with modules using C functions (for example os and so on). */ pub struct string { pub: str &u8 = 0 // points to a C style 0 terminated string of bytes. len int // the length of the .str field, excluding the ending 0 byte. It is always equal to strlen(.str). // NB string.is_lit is an enumeration of the following: // .is_lit == 0 => a fresh string, should be freed by autofree // .is_lit == 1 => a literal string from .rodata, should NOT be freed // .is_lit == -98761234 => already freed string, protects against double frees. // ---------> ^^^^^^^^^ calling free on these is a bug. // Any other value means that the string has been corrupted. mut: is_lit int } // runes returns an array of all the utf runes in the string `s` // which is useful if you want random access to them [direct_array_access] pub fn (s string) runes() []rune { mut runes := []rune{cap: s.len} for i := 0; i < s.len; i++ { char_len := utf8_char_len(unsafe { s.str[i] }) if char_len > 1 { end := if s.len - 1 >= i + char_len { i + char_len } else { s.len } mut r := unsafe { s[i..end] } runes << r.utf32_code() i += char_len - 1 } else { runes << unsafe { s.str[i] } } } return runes } // cstring_to_vstring creates a new V string copy of the C style string, // pointed by `s`. This function is most likely what you want to use when // working with C style pointers to 0 terminated strings (i.e. `char*`). // It is recomended to use it, unless you *do* understand the implications of // tos/tos2/tos3/tos4/tos5 in terms of memory management and interactions with // -autofree and `[manualfree]`. // It will panic, if the pointer `s` is 0. [unsafe] pub fn cstring_to_vstring(s &char) string { return unsafe { tos2(&u8(s)) }.clone() } // tos_clone creates a new V string copy of the C style string, pointed by `s`. // See also cstring_to_vstring (it is the same as it, the only difference is, // that tos_clone expects `&byte`, while cstring_to_vstring expects &char). // It will panic, if the pointer `s` is 0. [unsafe] pub fn tos_clone(s &u8) string { return unsafe { tos2(s) }.clone() } // tos creates a V string, given a C style pointer to a 0 terminated block. // Note: the memory block pointed by s is *reused, not copied*! // It will panic, when the pointer `s` is 0. // See also `tos_clone`. [unsafe] pub fn tos(s &u8, len int) string { if s == 0 { panic('tos(): nil string') } return string{ str: unsafe { s } len: len } } // tos2 creates a V string, given a C style pointer to a 0 terminated block. // Note: the memory block pointed by s is *reused, not copied*! // It will calculate the length first, thus it is more costly than `tos`. // It will panic, when the pointer `s` is 0. // It is the same as `tos3`, but for &byte pointers, avoiding callsite casts. // See also `tos_clone`. [unsafe] pub fn tos2(s &u8) string { if s == 0 { panic('tos2: nil string') } return string{ str: unsafe { s } len: unsafe { vstrlen(s) } } } // tos3 creates a V string, given a C style pointer to a 0 terminated block. // Note: the memory block pointed by s is *reused, not copied*! // It will calculate the length first, so it is more costly than tos. // It will panic, when the pointer `s` is 0. // It is the same as `tos2`, but for &char pointers, avoiding callsite casts. // See also `tos_clone`. [unsafe] pub fn tos3(s &char) string { if s == 0 { panic('tos3: nil string') } return string{ str: unsafe { &u8(s) } len: unsafe { vstrlen_char(s) } } } // tos4 creates a V string, given a C style pointer to a 0 terminated block. // Note: the memory block pointed by s is *reused, not copied*! // It will calculate the length first, so it is more costly than tos. // It returns '', when given a 0 pointer `s`, it does NOT panic. // It is the same as `tos5`, but for &byte pointers, avoiding callsite casts. // See also `tos_clone`. [unsafe] pub fn tos4(s &u8) string { if s == 0 { return '' } return string{ str: unsafe { s } len: unsafe { vstrlen(s) } } } // tos5 creates a V string, given a C style pointer to a 0 terminated block. // Note: the memory block pointed by s is *reused, not copied*! // It will calculate the length first, so it is more costly than tos. // It returns '', when given a 0 pointer `s`, it does NOT panic. // It is the same as `tos4`, but for &char pointers, avoiding callsite casts. // See also `tos_clone`. [unsafe] pub fn tos5(s &char) string { if s == 0 { return '' } return string{ str: unsafe { &u8(s) } len: unsafe { vstrlen_char(s) } } } // vstring converts a C style string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // Note: instead of `&u8(arr.data).vstring()`, do use `tos_clone(&u8(arr.data))`. // Strings returned from this function will be normal V strings beside that, // (i.e. they would be freed by V's -autofree mechanism, when they are no longer used). // See also `tos_clone`. [unsafe] pub fn (bp &u8) vstring() string { return string{ str: unsafe { bp } len: unsafe { vstrlen(bp) } } } // vstring_with_len converts a C style 0 terminated string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // This method has lower overhead compared to .vstring(), since it // does not need to calculate the length of the 0 terminated string. // See also `tos_clone`. [unsafe] pub fn (bp &u8) vstring_with_len(len int) string { return string{ str: unsafe { bp } len: len is_lit: 0 } } // vstring converts a C style string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // Strings returned from this function will be normal V strings beside that, // (i.e. they would be freed by V's -autofree mechanism, when they are // no longer used). // Note: instead of `&u8(a.data).vstring()`, use `tos_clone(&u8(a.data))`. // See also `tos_clone`. [unsafe] pub fn (cp &char) vstring() string { return string{ str: &u8(cp) len: unsafe { vstrlen_char(cp) } is_lit: 0 } } // vstring_with_len converts a C style 0 terminated string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // This method has lower overhead compared to .vstring(), since it // does not calculate the length of the 0 terminated string. // See also `tos_clone`. [unsafe] pub fn (cp &char) vstring_with_len(len int) string { return string{ str: &u8(cp) len: len is_lit: 0 } } // vstring_literal converts a C style string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // NB2: unlike vstring, vstring_literal will mark the string // as a literal, so it will not be freed by -autofree. // This is suitable for readonly strings, C string literals etc, // that can be read by the V program, but that should not be // managed/freed by it, for example `os.args` is implemented using it. // See also `tos_clone`. [unsafe] pub fn (bp &u8) vstring_literal() string { return string{ str: unsafe { bp } len: unsafe { vstrlen(bp) } is_lit: 1 } } // vstring_with_len converts a C style string to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // This method has lower overhead compared to .vstring_literal(), since it // does not need to calculate the length of the 0 terminated string. // See also `tos_clone`. [unsafe] pub fn (bp &u8) vstring_literal_with_len(len int) string { return string{ str: unsafe { bp } len: len is_lit: 1 } } // vstring_literal converts a C style string char* pointer to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // See also `byteptr.vstring_literal` for more details. // See also `tos_clone`. [unsafe] pub fn (cp &char) vstring_literal() string { return string{ str: &u8(cp) len: unsafe { vstrlen_char(cp) } is_lit: 1 } } // vstring_literal_with_len converts a C style string char* pointer, // to a V string. // Note: the memory block pointed by `bp` is *reused, not copied*! // This method has lower overhead compared to .vstring_literal(), since it // does not need to calculate the length of the 0 terminated string. // See also `tos_clone`. [unsafe] pub fn (cp &char) vstring_literal_with_len(len int) string { return string{ str: &u8(cp) len: len is_lit: 1 } } // len_utf8 returns the number of runes contained in the string `s`. pub fn (s string) len_utf8() int { mut l := 0 mut i := 0 for i < s.len { l++ i += ((0xe5000000 >> ((unsafe { s.str[i] } >> 3) & 0x1e)) & 3) + 1 } return l } // clone_static returns an independent copy of a given array. // It should be used only in -autofree generated code. [inline] fn (a string) clone_static() string { return a.clone() } // clone returns a copy of the V string `a`. pub fn (a string) clone() string { if a.len == 0 { return '' } mut b := string{ str: unsafe { malloc_noscan(a.len + 1) } len: a.len } unsafe { vmemcpy(b.str, a.str, a.len) b.str[a.len] = 0 } return b } // replace_once replaces the first occurence of `rep` with the string passed in `with`. pub fn (s string) replace_once(rep string, with string) string { idx := s.index_(rep) if idx == -1 { return s.clone() } return s.substr(0, idx) + with + s.substr(idx + rep.len, s.len) } // replace replaces all occurences of `rep` with the string passed in `with`. [direct_array_access] pub fn (s string) replace(rep string, with string) string { if s.len == 0 || rep.len == 0 || rep.len > s.len { return s.clone() } if !s.contains(rep) { return s.clone() } // TODO PERF Allocating ints is expensive. Should be a stack array // Get locations of all reps within this string mut idxs := []int{cap: s.len / rep.len} defer { unsafe { idxs.free() } } mut idx := 0 for { idx = s.index_after(rep, idx) if idx == -1 { break } idxs << idx idx += rep.len } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s.clone() } // Now we know the number of replacements we need to do and we can calc the len of the new string new_len := s.len + idxs.len * (with.len - rep.len) mut b := unsafe { malloc_noscan(new_len + 1) } // add space for the null byte at the end // Fill the new string mut b_i := 0 mut s_idx := 0 for _, rep_pos in idxs { for i in s_idx .. rep_pos { // copy everything up to piece being replaced unsafe { b[b_i] = s[i] } b_i++ } s_idx = rep_pos + rep.len // move string index past replacement for i in 0 .. with.len { // copy replacement piece unsafe { b[b_i] = with[i] } b_i++ } } if s_idx < s.len { // if any original after last replacement, copy it for i in s_idx .. s.len { unsafe { b[b_i] = s[i] } b_i++ } } unsafe { b[new_len] = 0 return tos(b, new_len) } } struct RepIndex { idx int val_idx int } // replace_each replaces all occurences of the string pairs given in `vals`. // Example: assert 'ABCD'.replace_each(['B','C/','C','D','D','C']) == 'AC/DC' [direct_array_access] pub fn (s string) replace_each(vals []string) string { if s.len == 0 || vals.len == 0 { return s.clone() } if vals.len % 2 != 0 { eprintln('string.replace_each(): odd number of strings') return s.clone() } // `rep` - string to replace // `with` - string to replace with // Remember positions of all rep strings, and calculate the length // of the new string to do just one allocation. mut new_len := s.len mut idxs := []RepIndex{cap: 6} mut idx := 0 s_ := s.clone() for rep_i := 0; rep_i < vals.len; rep_i += 2 { // vals: ['rep1, 'with1', 'rep2', 'with2'] rep := vals[rep_i] with := vals[rep_i + 1] for { idx = s_.index_after(rep, idx) if idx == -1 { break } // The string already found is set to `/del`, to avoid duplicate searches. for i in 0 .. rep.len { unsafe { s_.str[idx + i] = 127 } } // We need to remember both the position in the string, // and which rep/with pair it refers to. idxs << RepIndex{ idx: idx val_idx: rep_i } idx += rep.len new_len += with.len - rep.len } } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s.clone() } idxs.sort(a.idx < b.idx) mut b := unsafe { malloc_noscan(new_len + 1) } // add space for 0 terminator // Fill the new string mut idx_pos := 0 mut cur_idx := idxs[idx_pos] mut b_i := 0 for i := 0; i < s.len; i++ { if i == cur_idx.idx { // Reached the location of rep, replace it with "with" rep := vals[cur_idx.val_idx] with := vals[cur_idx.val_idx + 1] for j in 0 .. with.len { unsafe { b[b_i] = with[j] } b_i++ } // Skip the length of rep, since we just replaced it with "with" i += rep.len - 1 // Go to the next index idx_pos++ if idx_pos < idxs.len { cur_idx = idxs[idx_pos] } } else { // Rep doesnt start here, just copy unsafe { b[b_i] = s.str[i] } b_i++ } } unsafe { b[new_len] = 0 return tos(b, new_len) } } // replace_char replaces all occurences of the character `rep` multiple occurences of the character passed in `with` with respect to `repeat`. // Example: assert '\tHello!'.replace_char(`\t`,` `,8) == ' Hello!' [direct_array_access] pub fn (s string) replace_char(rep u8, with u8, repeat int) string { $if !no_bounds_checking { if repeat <= 0 { panic('string.replace_char(): tab length too short') } } if s.len == 0 { return s.clone() } // TODO Allocating ints is expensive. Should be a stack array // - string.replace() mut idxs := []int{cap: s.len} defer { unsafe { idxs.free() } } // No need to do a contains(), it already traverses the entire string for i, ch in s { if ch == rep { // Found char? Mark its location idxs << i } } if idxs.len == 0 { return s.clone() } // Now we know the number of replacements we need to do and we can calc the len of the new string new_len := s.len + idxs.len * (repeat - 1) mut b := unsafe { malloc_noscan(new_len + 1) } // add space for the null byte at the end // Fill the new string mut b_i := 0 mut s_idx := 0 for rep_pos in idxs { for i in s_idx .. rep_pos { // copy everything up to piece being replaced unsafe { b[b_i] = s[i] } b_i++ } s_idx = rep_pos + 1 // move string index past replacement for _ in 0 .. repeat { // copy replacement piece unsafe { b[b_i] = with } b_i++ } } if s_idx < s.len { // if any original after last replacement, copy it for i in s_idx .. s.len { unsafe { b[b_i] = s[i] } b_i++ } } unsafe { b[new_len] = 0 return tos(b, new_len) } } // normalize_tabs replaces all tab characters with `tab_len` amount of spaces // Example: assert '\t\tpop rax\t; pop rax'.normalize_tabs(2) == ' pop rax ; pop rax' [inline] pub fn (s string) normalize_tabs(tab_len int) string { return s.replace_char(`\t`, ` `, tab_len) } // bool returns `true` if the string equals the word "true" it will return `false` otherwise. [inline] pub fn (s string) bool() bool { return s == 'true' || s == 't' // TODO t for pg, remove } // int returns the value of the string as an integer `'1'.int() == 1`. [inline] pub fn (s string) int() int { return int(strconv.common_parse_int(s, 0, 32, false, false) or { 0 }) } // i64 returns the value of the string as i64 `'1'.i64() == i64(1)`. [inline] pub fn (s string) i64() i64 { return strconv.common_parse_int(s, 0, 64, false, false) or { 0 } } // i8 returns the value of the string as i8 `'1'.i8() == i8(1)`. [inline] pub fn (s string) i8() i8 { return i8(strconv.common_parse_int(s, 0, 8, false, false) or { 0 }) } // i16 returns the value of the string as i16 `'1'.i16() == i16(1)`. [inline] pub fn (s string) i16() i16 { return i16(strconv.common_parse_int(s, 0, 16, false, false) or { 0 }) } // f32 returns the value of the string as f32 `'1.0'.f32() == f32(1)`. [inline] pub fn (s string) f32() f32 { return f32(strconv.atof64(s) or { 0 }) } // f64 returns the value of the string as f64 `'1.0'.f64() == f64(1)`. [inline] pub fn (s string) f64() f64 { return strconv.atof64(s) or { 0 } } // u8 returns the value of the string as u8 `'1'.u8() == u8(1)`. [inline] pub fn (s string) u8() u8 { return u8(strconv.common_parse_uint(s, 0, 8, false, false) or { 0 }) } // u16 returns the value of the string as u16 `'1'.u16() == u16(1)`. [inline] pub fn (s string) u16() u16 { return u16(strconv.common_parse_uint(s, 0, 16, false, false) or { 0 }) } // u32 returns the value of the string as u32 `'1'.u32() == u32(1)`. [inline] pub fn (s string) u32() u32 { return u32(strconv.common_parse_uint(s, 0, 32, false, false) or { 0 }) } // u64 returns the value of the string as u64 `'1'.u64() == u64(1)`. [inline] pub fn (s string) u64() u64 { return strconv.common_parse_uint(s, 0, 64, false, false) or { 0 } } // parse_uint is like `parse_int` but for unsigned numbers // // This method directly exposes the `parse_uint` function from `strconv` // as a method on `string`. For more advanced features, // consider calling `strconv.common_parse_uint` directly. [inline] pub fn (s string) parse_uint(_base int, _bit_size int) !u64 { return strconv.parse_uint(s, _base, _bit_size) } // parse_int interprets a string s in the given base (0, 2 to 36) and // bit size (0 to 64) and returns the corresponding value i. // // If the base argument is 0, the true base is implied by the string's // prefix: 2 for "0b", 8 for "0" or "0o", 16 for "0x", and 10 otherwise. // Also, for argument base 0 only, underscore characters are permitted // as defined by the Go syntax for integer literals. // // The bitSize argument specifies the integer type // that the result must fit into. Bit sizes 0, 8, 16, 32, and 64 // correspond to int, int8, int16, int32, and int64. // If bitSize is below 0 or above 64, an error is returned. // // This method directly exposes the `parse_int` function from `strconv` // as a method on `string`. For more advanced features, // consider calling `strconv.common_parse_int` directly. [inline] pub fn (s string) parse_int(_base int, _bit_size int) !i64 { return strconv.parse_int(s, _base, _bit_size) } [direct_array_access] fn (s string) == (a string) bool { if s.str == 0 { // should never happen panic('string.eq(): nil string') } if s.len != a.len { return false } if s.len > 0 { last_idx := s.len - 1 if s[last_idx] != a[last_idx] { return false } } unsafe { return vmemcmp(s.str, a.str, a.len) == 0 } } // compare returns -1 if `s` < `a`, 0 if `s` == `a`, and 1 if `s` > `a` [direct_array_access] pub fn (s string) compare(a string) int { min_len := if s.len < a.len { s.len } else { a.len } for i in 0 .. min_len { if s[i] < a[i] { return -1 } if s[i] > a[i] { return 1 } } if s.len < a.len { return -1 } if s.len > a.len { return 1 } return 0 } [direct_array_access] fn (s string) < (a string) bool { for i in 0 .. s.len { if i >= a.len || s[i] > a[i] { return false } else if s[i] < a[i] { return true } } if s.len < a.len { return true } return false } [direct_array_access] fn (s string) + (a string) string { new_len := a.len + s.len mut res := string{ str: unsafe { malloc_noscan(new_len + 1) } len: new_len } unsafe { vmemcpy(res.str, s.str, s.len) vmemcpy(res.str + s.len, a.str, a.len) } unsafe { res.str[new_len] = 0 // V strings are not null terminated, but just in case } return res } // split_any splits the string to an array by any of the `delim` chars. // Example: "first row\nsecond row".split_any(" \n") == ['first', 'row', 'second', 'row'] // Split a string using the chars in the delimiter string as delimiters chars. // If the delimiter string is empty then `.split()` is used. [direct_array_access] pub fn (s string) split_any(delim string) []string { mut res := []string{} mut i := 0 // check empty source string if s.len > 0 { // if empty delimiter string using defautl split if delim.len <= 0 { return s.split('') } for index, ch in s { for delim_ch in delim { if ch == delim_ch { res << s[i..index] i = index + 1 break } } } if i < s.len { res << s[i..] } } return res } // rsplit_any splits the string to an array by any of the `delim` chars in reverse order. // Example: "first row\nsecond row".rsplit_any(" \n") == ['row', 'second', 'row', 'first'] // Split a string using the chars in the delimiter string as delimiters chars. // If the delimiter string is empty then `.rsplit()` is used. [direct_array_access] pub fn (s string) rsplit_any(delim string) []string { mut res := []string{} mut i := s.len - 1 if s.len > 0 { if delim.len <= 0 { return s.rsplit('') } mut rbound := s.len for i >= 0 { for delim_ch in delim { if s[i] == delim_ch { res << s[i + 1..rbound] rbound = i break } } i-- } if rbound > 0 { res << s[..rbound] } } return res } // split splits the string to an array by `delim`. // Example: assert 'A B C'.split(' ') == ['A','B','C'] // If `delim` is empty the string is split by it's characters. // Example: assert 'DEF'.split('') == ['D','E','F'] [inline] pub fn (s string) split(delim string) []string { return s.split_nth(delim, 0) } // rsplit splits the string to an array by `delim` in reverse order. // Example: assert 'A B C'.rsplit(' ') == ['C','B','A'] // If `delim` is empty the string is split by it's characters. // Example: assert 'DEF'.rsplit('') == ['F','E','D'] [inline] pub fn (s string) rsplit(delim string) []string { return s.rsplit_nth(delim, 0) } // split_once devides string into pair of string by `delim`. // Example: // ```v // path, ext := 'file.ts.dts'.splice_once('.')? // assert path == 'file' // assert ext == 'ts.dts' // ``` // Note that rsplit_once returns splitted string string as first part of pair, // and returns remaining as second part of pair. pub fn (s string) split_once(delim string) ?(string, string) { result := s.split_nth(delim, 2) if result.len != 2 { return none } return result[0], result[1] } // rsplit_once devides string into pair of string by `delim`. // Example: // ```v // path, ext := 'file.ts.dts'.splice_once('.')? // assert path == 'file.ts' // assert ext == 'dts' // ``` // Note that rsplit_once returns remaining string as first part of pair, // and returns splitted string as second part of pair. pub fn (s string) rsplit_once(delim string) ?(string, string) { result := s.rsplit_nth(delim, 2) if result.len != 2 { return none } return result[1], result[0] } // split_nth splits the string based on the passed `delim` substring. // It returns the first Nth parts. When N=0, return all the splits. // The last returned element has the remainder of the string, even if // the remainder contains more `delim` substrings. [direct_array_access] pub fn (s string) split_nth(delim string, nth int) []string { mut res := []string{} mut i := 0 match delim.len { 0 { i = 1 for ch in s { if nth > 0 && i >= nth { res << s[i..] break } res << ch.ascii_str() i++ } return res } 1 { mut start := 0 delim_byte := delim[0] for i < s.len { if s[i] == delim_byte { was_last := nth > 0 && res.len == nth - 1 if was_last { break } val := s.substr(start, i) res << val start = i + delim.len i = start } else { i++ } } // Then the remaining right part of the string if nth < 1 || res.len < nth { res << s[start..] } return res } else { mut start := 0 // Take the left part for each delimiter occurence for i <= s.len { is_delim := i + delim.len <= s.len && s.substr(i, i + delim.len) == delim if is_delim { was_last := nth > 0 && res.len == nth - 1 if was_last { break } val := s.substr(start, i) res << val start = i + delim.len i = start } else { i++ } } // Then the remaining right part of the string if nth < 1 || res.len < nth { res << s[start..] } return res } } } // rsplit_nth splits the string based on the passed `delim` substring in revese order. // It returns the first Nth parts. When N=0, return all the splits. // The last returned element has the remainder of the string, even if // the remainder contains more `delim` substrings. [direct_array_access] pub fn (s string) rsplit_nth(delim string, nth int) []string { mut res := []string{} mut i := s.len - 1 match delim.len { 0 { for i >= 0 { if nth > 0 && res.len == nth - 1 { res << s[..i] break } res << s[i].ascii_str() i-- } return res } 1 { mut rbound := s.len delim_byte := delim[0] for i >= 0 { if s[i] == delim_byte { if nth > 0 && res.len == nth - 1 { break } res << s[i + 1..rbound] rbound = i i-- } else { i-- } } if nth < 1 || res.len < nth { res << s[..rbound] } return res } else { mut rbound := s.len for i >= 0 { is_delim := i - delim.len >= 0 && s[i - delim.len..i] == delim if is_delim { if nth > 0 && res.len == nth - 1 { break } res << s[i..rbound] rbound = i - delim.len i -= delim.len } else { i-- } } if nth < 1 || res.len < nth { res << s[..rbound] } return res } } } // split_into_lines splits the string by newline characters. // newlines are stripped. // `\r` (MacOS), `\n` (POSIX), and `\r\n` (WinOS) line endings are all supported (including mixed line endings). // NOTE: algorithm is "greedy", consuming '\r\n' as a single line ending with higher priority than '\r' and '\n' as multiple endings [direct_array_access] pub fn (s string) split_into_lines() []string { mut res := []string{} if s.len == 0 { return res } cr := `\r` lf := `\n` mut line_start := 0 for i := 0; i < s.len; i++ { if line_start <= i { if s[i] == lf { res << if line_start == i { '' } else { s[line_start..i] } line_start = i + 1 } else if s[i] == cr { res << if line_start == i { '' } else { s[line_start..i] } if (i + 1) < s.len && s[i + 1] == lf { line_start = i + 2 } else { line_start = i + 1 } } } } if line_start < s.len { res << s[line_start..] } return res } // used internally for [2..4] [inline] fn (s string) substr2(start int, _end int, end_max bool) string { end := if end_max { s.len } else { _end } return s.substr(start, end) } // substr returns the string between index positions `start` and `end`. // Example: assert 'ABCD'.substr(1,3) == 'BC' [direct_array_access] pub fn (s string) substr(start int, end int) string { $if !no_bounds_checking { if start > end || start > s.len || end > s.len || start < 0 || end < 0 { panic('substr(${start}, ${end}) out of bounds (len=${s.len})') } } len := end - start if len == s.len { return s.clone() } mut res := string{ str: unsafe { malloc_noscan(len + 1) } len: len } unsafe { vmemcpy(res.str, s.str + start, len) res.str[len] = 0 } return res } // version of `substr()` that is used in `a[start..end] or {` // return an error when the index is out of range [direct_array_access] pub fn (s string) substr_with_check(start int, end int) !string { if start > end || start > s.len || end > s.len || start < 0 || end < 0 { return error('substr(${start}, ${end}) out of bounds (len=${s.len})') } len := end - start if len == s.len { return s.clone() } mut res := string{ str: unsafe { malloc_noscan(len + 1) } len: len } unsafe { vmemcpy(res.str, s.str + start, len) res.str[len] = 0 } return res } // substr_ni returns the string between index positions `start` and `end` allowing negative indexes // This function always return a valid string. [direct_array_access] pub fn (s string) substr_ni(_start int, _end int) string { mut start := _start mut end := _end // borders math if start < 0 { start = s.len + start if start < 0 { start = 0 } } if end < 0 { end = s.len + end if end < 0 { end = 0 } } if end >= s.len { end = s.len } if start > s.len || end < start { return '' } len := end - start // string copy mut res := string{ str: unsafe { malloc_noscan(len + 1) } len: len } unsafe { vmemcpy(res.str, s.str + start, len) res.str[len] = 0 } return res } // index returns the position of the first character of the input string. // It will return `-1` if the input string can't be found. [direct_array_access] fn (s string) index_(p string) int { if p.len > s.len || p.len == 0 { return -1 } if p.len > 2 { return s.index_kmp(p) } mut i := 0 for i < s.len { mut j := 0 for j < p.len && unsafe { s.str[i + j] == p.str[j] } { j++ } if j == p.len { return i } i++ } return -1 } // index returns the position of the first character of the input string. // It will return `none` if the input string can't be found. pub fn (s string) index(p string) ?int { idx := s.index_(p) if idx == -1 { return none } return idx } // index_kmp does KMP search. [direct_array_access; manualfree] fn (s string) index_kmp(p string) int { if p.len > s.len { return -1 } mut prefix := []int{len: p.len} defer { unsafe { prefix.free() } } mut j := 0 for i := 1; i < p.len; i++ { for unsafe { p.str[j] != p.str[i] } && j > 0 { j = prefix[j - 1] } if unsafe { p.str[j] == p.str[i] } { j++ } prefix[i] = j } j = 0 for i in 0 .. s.len { for unsafe { p.str[j] != s.str[i] } && j > 0 { j = prefix[j - 1] } if unsafe { p.str[j] == s.str[i] } { j++ } if j == p.len { return i - p.len + 1 } } return -1 } // index_any returns the position of any of the characters in the input string - if found. pub fn (s string) index_any(chars string) int { for i, ss in s { for c in chars { if c == ss { return i } } } return -1 } // last_index returns the position of the last occurence of the input string. [direct_array_access] fn (s string) last_index_(p string) int { if p.len > s.len || p.len == 0 { return -1 } mut i := s.len - p.len for i >= 0 { mut j := 0 for j < p.len && unsafe { s.str[i + j] == p.str[j] } { j++ } if j == p.len { return i } i-- } return -1 } // last_index returns the position of the last occurence of the input string. pub fn (s string) last_index(p string) ?int { idx := s.last_index_(p) if idx == -1 { return none } return idx } // index_after returns the position of the input string, starting search from `start` position. [direct_array_access] pub fn (s string) index_after(p string, start int) int { if p.len > s.len { return -1 } mut strt := start if start < 0 { strt = 0 } if start >= s.len { return -1 } mut i := strt for i < s.len { mut j := 0 mut ii := i for j < p.len && unsafe { s.str[ii] == p.str[j] } { j++ ii++ } if j == p.len { return i } i++ } return -1 } // index_u8 returns the index of byte `c` if found in the string. // index_u8 returns -1 if the byte can not be found. [direct_array_access] pub fn (s string) index_u8(c u8) int { for i, b in s { if b == c { return i } } return -1 } // last_index_byte returns the index of the last occurence of byte `c` if found in the string. // last_index_byte returns -1 if the byte is not found. [direct_array_access] pub fn (s string) last_index_u8(c u8) int { for i := s.len - 1; i >= 0; i-- { if unsafe { s.str[i] == c } { return i } } return -1 } // count returns the number of occurrences of `substr` in the string. // count returns -1 if no `substr` could be found. [direct_array_access] pub fn (s string) count(substr string) int { if s.len == 0 || substr.len == 0 { return 0 } if substr.len > s.len { return 0 } mut n := 0 if substr.len == 1 { target := substr[0] for letter in s { if letter == target { n++ } } return n } mut i := 0 for { i = s.index_after(substr, i) if i == -1 { return n } i += substr.len n++ } return 0 // TODO can never get here - v doesn't know that } // contains_u8 returns `true` if the string contains the byte value `x`. // See also: [`string.index_u8`](#string.index_u8) , to get the index of the byte as well. pub fn (s string) contains_u8(x u8) bool { for c in s { if x == c { return true } } return false } // contains returns `true` if the string contains `substr`. // See also: [`string.index`](#string.index) pub fn (s string) contains(substr string) bool { if substr.len == 0 { return true } if substr.len == 1 { return s.contains_u8(unsafe { substr.str[0] }) } return s.index_(substr) != -1 } // contains_any returns `true` if the string contains any chars in `chars`. pub fn (s string) contains_any(chars string) bool { for c in chars { if s.contains_u8(c) { return true } } return false } // contains_only returns `true`, if the string contains only the characters in `chars`. pub fn (s string) contains_only(chars string) bool { if chars.len == 0 { return false } for ch in s { mut res := 0 for i := 0; i < chars.len && res == 0; i++ { res += int(ch == unsafe { chars.str[i] }) } if res == 0 { return false } } return true } // contains_any_substr returns `true` if the string contains any of the strings in `substrs`. pub fn (s string) contains_any_substr(substrs []string) bool { if substrs.len == 0 { return true } for sub in substrs { if s.contains(sub) { return true } } return false } // starts_with returns `true` if the string starts with `p`. [direct_array_access] pub fn (s string) starts_with(p string) bool { if p.len > s.len { return false } for i in 0 .. p.len { if unsafe { s.str[i] != p.str[i] } { return false } } return true } // ends_with returns `true` if the string ends with `p`. [direct_array_access] pub fn (s string) ends_with(p string) bool { if p.len > s.len { return false } for i in 0 .. p.len { if unsafe { p.str[i] != s.str[s.len - p.len + i] } { return false } } return true } // to_lower returns the string in all lowercase characters. // TODO only works with ASCII [direct_array_access] pub fn (s string) to_lower() string { unsafe { mut b := malloc_noscan(s.len + 1) for i in 0 .. s.len { if s.str[i] >= `A` && s.str[i] <= `Z` { b[i] = s.str[i] + 32 } else { b[i] = s.str[i] } } b[s.len] = 0 return tos(b, s.len) } } // is_lower returns `true` if all characters in the string is lowercase. // Example: assert 'hello developer'.is_lower() == true [direct_array_access] pub fn (s string) is_lower() bool { for i in 0 .. s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } // to_upper returns the string in all uppercase characters. // Example: assert 'Hello V'.to_upper() == 'HELLO V' [direct_array_access] pub fn (s string) to_upper() string { unsafe { mut b := malloc_noscan(s.len + 1) for i in 0 .. s.len { if s.str[i] >= `a` && s.str[i] <= `z` { b[i] = s.str[i] - 32 } else { b[i] = s.str[i] } } b[s.len] = 0 return tos(b, s.len) } } // is_upper returns `true` if all characters in the string is uppercase. // See also: [`byte.is_capital`](#byte.is_capital) // Example: assert 'HELLO V'.is_upper() == true [direct_array_access] pub fn (s string) is_upper() bool { for i in 0 .. s.len { if s[i] >= `a` && s[i] <= `z` { return false } } return true } // capitalize returns the string with the first character capitalized. // Example: assert 'hello'.capitalize() == 'Hello' [direct_array_access] pub fn (s string) capitalize() string { if s.len == 0 { return '' } s0 := s[0] letter := s0.ascii_str() uletter := letter.to_upper() if s.len == 1 { return uletter } srest := s[1..] res := uletter + srest return res } // is_capital returns `true`, if the first character in the string `s`, // is a capital letter, and the rest are NOT. // Example: assert 'Hello'.is_capital() == true // Example: assert 'HelloWorld'.is_capital() == false [direct_array_access] pub fn (s string) is_capital() bool { if s.len == 0 || !(s[0] >= `A` && s[0] <= `Z`) { return false } for i in 1 .. s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } // starts_with_capital returns `true`, if the first character in the string `s`, // is a capital letter, even if the rest are not. // Example: assert 'Hello'.starts_with_capital() == true // Example: assert 'Hello. World.'.starts_with_capital() == true [direct_array_access] pub fn (s string) starts_with_capital() bool { if s.len == 0 || !(s[0] >= `A` && s[0] <= `Z`) { return false } return true } // title returns the string with each word capitalized. // Example: assert 'hello v developer'.title() == 'Hello V Developer' pub fn (s string) title() string { words := s.split(' ') mut tit := []string{} for word in words { tit << word.capitalize() } title := tit.join(' ') return title } // is_title returns true if all words of the string are capitalized. // Example: assert 'Hello V Developer'.is_title() == true pub fn (s string) is_title() bool { words := s.split(' ') for word in words { if !word.is_capital() { return false } } return true } // find_between returns the string found between `start` string and `end` string. // Example: assert 'hey [man] how you doin'.find_between('[', ']') == 'man' pub fn (s string) find_between(start string, end string) string { start_pos := s.index_(start) if start_pos == -1 { return '' } // First get everything to the right of 'start' val := s[start_pos + start.len..] end_pos := val.index_(end) if end_pos == -1 { return val } return val[..end_pos] } // trim_space strips any of ` `, `\n`, `\t`, `\v`, `\f`, `\r` from the start and end of the string. // Example: assert ' Hello V '.trim_space() == 'Hello V' [inline] pub fn (s string) trim_space() string { return s.trim(' \n\t\v\f\r') } // trim strips any of the characters given in `cutset` from the start and end of the string. // Example: assert ' ffHello V ffff'.trim(' f') == 'Hello V' pub fn (s string) trim(cutset string) string { if s.len < 1 || cutset.len < 1 { return s.clone() } left, right := s.trim_indexes(cutset) return s.substr(left, right) } // trim_indexes gets the new start and end indicies of a string when any of the characters given in `cutset` were stripped from the start and end of the string. Should be used as an input to `substr()`. If the string contains only the characters in `cutset`, both values returned are zero. // Example: left, right := '-hi-'.trim_indexes('-') [direct_array_access] pub fn (s string) trim_indexes(cutset string) (int, int) { mut pos_left := 0 mut pos_right := s.len - 1 mut cs_match := true for pos_left <= s.len && pos_right >= -1 && cs_match { cs_match = false for cs in cutset { if s[pos_left] == cs { pos_left++ cs_match = true break } } for cs in cutset { if s[pos_right] == cs { pos_right-- cs_match = true break } } if pos_left > pos_right { return 0, 0 } } return pos_left, pos_right + 1 } // trim_left strips any of the characters given in `cutset` from the left of the string. // Example: assert 'd Hello V developer'.trim_left(' d') == 'Hello V developer' [direct_array_access] pub fn (s string) trim_left(cutset string) string { if s.len < 1 || cutset.len < 1 { return s.clone() } mut pos := 0 for pos < s.len { mut found := false for cs in cutset { if s[pos] == cs { found = true break } } if !found { break } pos++ } return s[pos..] } // trim_right strips any of the characters given in `cutset` from the right of the string. // Example: assert ' Hello V d'.trim_right(' d') == ' Hello V' [direct_array_access] pub fn (s string) trim_right(cutset string) string { if s.len < 1 || cutset.len < 1 { return s.clone() } mut pos := s.len - 1 for pos >= 0 { mut found := false for cs in cutset { if s[pos] == cs { found = true } } if !found { break } pos-- } if pos < 0 { return '' } return s[..pos + 1] } // trim_string_left strips `str` from the start of the string. // Example: assert 'WorldHello V'.trim_string_left('World') == 'Hello V' pub fn (s string) trim_string_left(str string) string { if s.starts_with(str) { return s[str.len..] } return s.clone() } // trim_string_right strips `str` from the end of the string. // Example: assert 'Hello VWorld'.trim_string_right('World') == 'Hello V' pub fn (s string) trim_string_right(str string) string { if s.ends_with(str) { return s[..s.len - str.len] } return s.clone() } // compare_strings returns `-1` if `a < b`, `1` if `a > b` else `0`. pub fn compare_strings(a &string, b &string) int { if a < b { return -1 } if a > b { return 1 } return 0 } // compare_strings_by_len returns `-1` if `a.len < b.len`, `1` if `a.len > b.len` else `0`. fn compare_strings_by_len(a &string, b &string) int { if a.len < b.len { return -1 } if a.len > b.len { return 1 } return 0 } // compare_lower_strings returns the same as compare_strings but converts `a` and `b` to lower case before comparing. fn compare_lower_strings(a &string, b &string) int { aa := a.to_lower() bb := b.to_lower() return compare_strings(&aa, &bb) } // sort_ignore_case sorts the string array using case insesitive comparing. [inline] pub fn (mut s []string) sort_ignore_case() { s.sort_with_compare(compare_lower_strings) } // sort_by_len sorts the the string array by each string's `.len` length. [inline] pub fn (mut s []string) sort_by_len() { s.sort_with_compare(compare_strings_by_len) } // str returns a copy of the string [inline] pub fn (s string) str() string { return s.clone() } // at returns the byte at index `idx`. // Example: assert 'ABC'.at(1) == u8(`B`) fn (s string) at(idx int) byte { $if !no_bounds_checking { if idx < 0 || idx >= s.len { panic('string index out of range: ${idx} / ${s.len}') } } unsafe { return s.str[idx] } } // version of `at()` that is used in `a[i] or {` // return an error when the index is out of range fn (s string) at_with_check(idx int) ?u8 { if idx < 0 || idx >= s.len { return none } unsafe { return s.str[idx] } } // is_space returns `true` if the byte is a white space character. // The following list is considered white space characters: ` `, `\t`, `\n`, `\v`, `\f`, `\r`, 0x85, 0xa0 // Example: assert u8(` `).is_space() == true [inline] pub fn (c u8) is_space() bool { // 0x85 is NEXT LINE (NEL) // 0xa0 is NO-BREAK SPACE return c == 32 || (c > 8 && c < 14) || c == 0x85 || c == 0xa0 } // is_digit returns `true` if the byte is in range 0-9 and `false` otherwise. // Example: assert u8(`9`).is_digit() == true [inline] pub fn (c u8) is_digit() bool { return c >= `0` && c <= `9` } // is_hex_digit returns `true` if the byte is either in range 0-9, a-f or A-F and `false` otherwise. // Example: assert u8(`F`).is_hex_digit() == true [inline] pub fn (c u8) is_hex_digit() bool { return (c >= `0` && c <= `9`) || (c >= `a` && c <= `f`) || (c >= `A` && c <= `F`) } // is_oct_digit returns `true` if the byte is in range 0-7 and `false` otherwise. // Example: assert u8(`7`).is_oct_digit() == true [inline] pub fn (c u8) is_oct_digit() bool { return c >= `0` && c <= `7` } // is_bin_digit returns `true` if the byte is a binary digit (0 or 1) and `false` otherwise. // Example: assert u8(`0`).is_bin_digit() == true [inline] pub fn (c u8) is_bin_digit() bool { return c == `0` || c == `1` } // is_letter returns `true` if the byte is in range a-z or A-Z and `false` otherwise. // Example: assert u8(`V`).is_letter() == true [inline] pub fn (c u8) is_letter() bool { return (c >= `a` && c <= `z`) || (c >= `A` && c <= `Z`) } // is_alnum returns `true` if the byte is in range a-z, A-Z, 0-9 and `false` otherwise. // Example: assert u8(`V`).is_alnum() == true [inline] pub fn (c u8) is_alnum() bool { return (c >= `a` && c <= `z`) || (c >= `A` && c <= `Z`) || (c >= `0` && c <= `9`) } // free allows for manually freeing the memory occupied by the string [manualfree; unsafe] pub fn (s &string) free() { $if prealloc { return } if s.is_lit == -98761234 { double_free_msg := unsafe { &u8(c'double string.free() detected\n') } double_free_msg_len := unsafe { vstrlen(double_free_msg) } $if freestanding { bare_eprint(double_free_msg, u64(double_free_msg_len)) } $else { _write_buf_to_fd(1, double_free_msg, double_free_msg_len) } return } if s.is_lit == 1 || s.str == 0 { return } unsafe { // C.printf(c's: %x %s\n', s.str, s.str) free(s.str) s.str = nil } s.is_lit = -98761234 } // before returns the contents before `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.before('.') == '23:34:45' // Example: assert 'abcd'.before('.') == 'abcd' // TODO: deprecate and remove either .before or .all_before pub fn (s string) before(sub string) string { pos := s.index_(sub) if pos == -1 { return s.clone() } return s[..pos] } // all_before returns the contents before `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.all_before('.') == '23:34:45' // Example: assert 'abcd'.all_before('.') == 'abcd' pub fn (s string) all_before(sub string) string { // TODO remove dup method pos := s.index_(sub) if pos == -1 { return s.clone() } return s[..pos] } // all_before_last returns the contents before the last occurence of `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.all_before_last(':') == '23:34' // Example: assert 'abcd'.all_before_last('.') == 'abcd' pub fn (s string) all_before_last(sub string) string { pos := s.last_index_(sub) if pos == -1 { return s.clone() } return s[..pos] } // all_after returns the contents after `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.all_after('.') == '234' // Example: assert 'abcd'.all_after('z') == 'abcd' pub fn (s string) all_after(sub string) string { pos := s.index_(sub) if pos == -1 { return s.clone() } return s[pos + sub.len..] } // all_after_last returns the contents after the last occurence of `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.all_after_last(':') == '45.234' // Example: assert 'abcd'.all_after_last('z') == 'abcd' pub fn (s string) all_after_last(sub string) string { pos := s.last_index_(sub) if pos == -1 { return s.clone() } return s[pos + sub.len..] } // all_after_first returns the contents after the first occurence of `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.all_after_first(':') == '34:45.234' // Example: assert 'abcd'.all_after_first('z') == 'abcd' pub fn (s string) all_after_first(sub string) string { pos := s.index_(sub) if pos == -1 { return s.clone() } return s[pos + sub.len..] } // after returns the contents after the last occurence of `sub` in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.after(':') == '45.234' // Example: assert 'abcd'.after('z') == 'abcd' // TODO: deprecate either .all_after_last or .after [inline] pub fn (s string) after(sub string) string { return s.all_after_last(sub) } // after_char returns the contents after the first occurence of `sub` character in the string. // If the substring is not found, it returns the full input string. // Example: assert '23:34:45.234'.after_char(`:`) == '34:45.234' // Example: assert 'abcd'.after_char(`:`) == 'abcd' pub fn (s string) after_char(sub u8) string { mut pos := -1 for i, c in s { if c == sub { pos = i break } } if pos == -1 { return s.clone() } return s[pos + 1..] } // join joins a string array into a string using `sep` separator. // Example: assert ['Hello','V'].join(' ') == 'Hello V' pub fn (a []string) join(sep string) string { if a.len == 0 { return '' } mut len := 0 for val in a { len += val.len + sep.len } len -= sep.len // Allocate enough memory mut res := string{ str: unsafe { malloc_noscan(len + 1) } len: len } mut idx := 0 for i, val in a { unsafe { vmemcpy(voidptr(res.str + idx), val.str, val.len) idx += val.len } // Add sep if it's not last if i != a.len - 1 { unsafe { vmemcpy(voidptr(res.str + idx), sep.str, sep.len) idx += sep.len } } } unsafe { res.str[res.len] = 0 } return res } // join joins a string array into a string using a `\n` newline delimiter. [inline] pub fn (s []string) join_lines() string { return s.join('\n') } // reverse returns a reversed string. // Example: assert 'Hello V'.reverse() == 'V olleH' [direct_array_access] pub fn (s string) reverse() string { if s.len == 0 || s.len == 1 { return s.clone() } mut res := string{ str: unsafe { malloc_noscan(s.len + 1) } len: s.len } for i := s.len - 1; i >= 0; i-- { unsafe { res.str[s.len - i - 1] = s[i] } } unsafe { res.str[res.len] = 0 } return res } // limit returns a portion of the string, starting at `0` and extending for a given number of characters afterward. // 'hello'.limit(2) => 'he' // 'hi'.limit(10) => 'hi' pub fn (s string) limit(max int) string { u := s.runes() if u.len <= max { return s.clone() } return u[0..max].string() } // hash returns an integer hash of the string. pub fn (s string) hash() int { mut h := u32(0) if h == 0 && s.len > 0 { for c in s { h = h * 31 + u32(c) } } return int(h) } // bytes returns the string converted to a byte array. pub fn (s string) bytes() []u8 { if s.len == 0 { return [] } mut buf := []u8{len: s.len} unsafe { vmemcpy(buf.data, s.str, s.len) } return buf } // repeat returns a new string with `count` number of copies of the string it was called on. [direct_array_access] pub fn (s string) repeat(count int) string { if count < 0 { panic('string.repeat: count is negative: ${count}') } else if count == 0 { return '' } else if count == 1 { return s.clone() } mut ret := unsafe { malloc_noscan(s.len * count + 1) } for i in 0 .. count { unsafe { vmemcpy(ret + i * s.len, s.str, s.len) } } new_len := s.len * count unsafe { ret[new_len] = 0 } return unsafe { ret.vstring_with_len(new_len) } } // fields returns a string array of the string split by `\t` and ` ` // Example: assert '\t\tv = v'.fields() == ['v', '=', 'v'] // Example: assert ' sss ssss'.fields() == ['sss', 'ssss'] pub fn (s string) fields() []string { mut res := []string{} mut word_start := 0 mut word_len := 0 mut is_in_word := false mut is_space := false for i, c in s { is_space = c in [32, 9, 10] if !is_space { word_len++ } if !is_in_word && !is_space { word_start = i is_in_word = true continue } if is_space && is_in_word { res << s[word_start..word_start + word_len] is_in_word = false word_len = 0 word_start = 0 continue } } if is_in_word && word_len > 0 { // collect the remainder word at the end res << s[word_start..s.len] } return res } // strip_margin allows multi-line strings to be formatted in a way that removes white-space // before a delimeter. by default `|` is used. // Note: the delimiter has to be a byte at this time. That means surrounding // the value in ``. // // See also: string.trim_indent() // // Example: // ```v // st := 'Hello there, // | this is a string, // | Everything before the first | is removed'.strip_margin() // // assert st == 'Hello there, // this is a string, // Everything before the first | is removed' // ``` [inline] pub fn (s string) strip_margin() string { return s.strip_margin_custom(`|`) } // strip_margin_custom does the same as `strip_margin` but will use `del` as delimiter instead of `|` [direct_array_access] pub fn (s string) strip_margin_custom(del u8) string { mut sep := del if sep.is_space() { println('Warning: `strip_margin` cannot use white-space as a delimiter') println(' Defaulting to `|`') sep = `|` } // don't know how much space the resulting string will be, but the max it // can be is this big mut ret := unsafe { malloc_noscan(s.len + 1) } mut count := 0 for i := 0; i < s.len; i++ { if s[i] in [10, 13] { unsafe { ret[count] = s[i] } count++ // CRLF if s[i] == 13 && i < s.len - 1 && s[i + 1] == 10 { unsafe { ret[count] = s[i + 1] } count++ i++ } for s[i] != sep { i++ if i >= s.len { break } } } else { unsafe { ret[count] = s[i] } count++ } } unsafe { ret[count] = 0 return ret.vstring_with_len(count) } } // trim_indent detects a common minimal indent of all the input lines, // removes it from every line and also removes the first and the last // lines if they are blank (notice difference blank vs empty). // // Note that blank lines do not affect the detected indent level. // // In case if there are non-blank lines with no leading whitespace characters // (no indent at all) then the common indent is 0, and therefore this function // doesn't change the indentation. // // Example: // ```v // st := ' // Hello there, // this is a string, // all the leading indents are removed // and also the first and the last lines if they are blank // '.trim_indent() // // assert st == 'Hello there, // this is a string, // all the leading indents are removed // and also the first and the last lines if they are blank' // ``` pub fn (s string) trim_indent() string { mut lines := s.split_into_lines() lines_indents := lines .filter(!it.is_blank()) .map(it.indent_width()) mut min_common_indent := int(2147483647) // max int for line_indent in lines_indents { if line_indent < min_common_indent { min_common_indent = line_indent } } // trim first line if it's blank if lines.len > 0 && lines.first().is_blank() { lines = lines[1..] } // trim last line if it's blank if lines.len > 0 && lines.last().is_blank() { lines = lines[..lines.len - 1] } mut trimmed_lines := []string{cap: lines.len} for line in lines { if line.is_blank() { trimmed_lines << line continue } trimmed_lines << line[min_common_indent..] } return trimmed_lines.join('\n') } // indent_width returns the number of spaces or tabs at the beginning of the string. // Example: assert ' v'.indent_width() == 2 // Example: assert '\t\tv'.indent_width() == 2 pub fn (s string) indent_width() int { for i, c in s { if !c.is_space() { return i } } return 0 } // is_blank returns true if the string is empty or contains only white-space. // Example: assert ' '.is_blank() // Example: assert '\t'.is_blank() // Example: assert 'v'.is_blank() == false pub fn (s string) is_blank() bool { if s.len == 0 { return true } for c in s { if !c.is_space() { return false } } return true } // match_glob matches the string, with a Unix shell-style wildcard pattern. // Note: wildcard patterns are NOT the same as regular expressions. // They are much simpler, and do not allow backtracking, captures, etc. // The special characters used in shell-style wildcards are: // `*` - matches everything // `?` - matches any single character // `[seq]` - matches any of the characters in the sequence // `[^seq]` - matches any character that is NOT in the sequence // Any other character in `pattern`, is matched 1:1 to the corresponding // character in `name`, including / and \. // You can wrap the meta-characters in brackets too, i.e. `[?]` matches `?` // in the string, and `[*]` matches `*` in the string. // Example: assert 'ABCD'.match_glob('AB*') // Example: assert 'ABCD'.match_glob('*D') // Example: assert 'ABCD'.match_glob('*B*') // Example: assert !'ABCD'.match_glob('AB') [direct_array_access] pub fn (name string) match_glob(pattern string) bool { // Initial port based on https://research.swtch.com/glob.go // See also https://research.swtch.com/glob mut px := 0 mut nx := 0 mut next_px := 0 mut next_nx := 0 plen := pattern.len nlen := name.len for px < plen || nx < nlen { if px < plen { c := pattern[px] match c { `?` { // single-character wildcard if nx < nlen { px++ nx++ continue } } `*` { // zero-or-more-character wildcard // Try to match at nx. // If that doesn't work out, restart at nx+1 next. next_px = px next_nx = nx + 1 px++ continue } `[` { if nx < nlen { wanted_c := name[nx] mut bstart := px mut is_inverted := false mut inner_match := false mut inner_idx := bstart + 1 mut inner_c := 0 if inner_idx < plen { inner_c = pattern[inner_idx] if inner_c == `^` { is_inverted = true inner_idx++ } } for ; inner_idx < plen; inner_idx++ { inner_c = pattern[inner_idx] if inner_c == `]` { break } if inner_c == wanted_c { inner_match = true for px < plen && pattern[px] != `]` { px++ } break } } if is_inverted { if inner_match { return false } else { px = inner_idx } } } px++ nx++ continue } else { // an ordinary character if nx < nlen && name[nx] == c { px++ nx++ continue } } } } if 0 < next_nx && next_nx <= nlen { // A mismatch, try restarting: px = next_px nx = next_nx continue } return false } // Matched all of `pattern` to all of `name` return true } // is_ascii returns true if all characters belong to the US-ASCII set ([` `..`~`]) [inline] pub fn (s string) is_ascii() bool { return !s.bytes().any(it < u8(` `) || it > u8(`~`)) }