module stats import math // Measure of Occurance // Frequency of a given number // Based on // https://www.mathsisfun.com/data/frequency-distribution.html pub fn freq<T>(data []T, val T) int { if data.len == 0 { return 0 } mut count := 0 for v in data { if v == val { count++ } } return count } // Measure of Central Tendancy // Mean of the given input array // Based on // https://www.mathsisfun.com/data/central-measures.html pub fn mean<T>(data []T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += v } return sum / T(data.len) } // Measure of Central Tendancy // Geometric Mean of the given input array // Based on // https://www.mathsisfun.com/numbers/geometric-mean.html pub fn geometric_mean<T>(data []T) T { if data.len == 0 { return T(0) } mut sum := 1.0 for v in data { sum *= v } return math.pow(sum, 1.0 / T(data.len)) } // Measure of Central Tendancy // Harmonic Mean of the given input array // Based on // https://www.mathsisfun.com/numbers/harmonic-mean.html pub fn harmonic_mean<T>(data []T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += 1.0 / v } return T(data.len) / sum } // Measure of Central Tendancy // Median of the given input array ( input array is assumed to be sorted ) // Based on // https://www.mathsisfun.com/data/central-measures.html pub fn median<T>(sorted_data []T) T { if sorted_data.len == 0 { return T(0) } if sorted_data.len % 2 == 0 { mid := (sorted_data.len / 2) - 1 return (sorted_data[mid] + sorted_data[mid + 1]) / T(2) } else { return sorted_data[((sorted_data.len - 1) / 2)] } } // Measure of Central Tendancy // Mode of the given input array // Based on // https://www.mathsisfun.com/data/central-measures.html pub fn mode<T>(data []T) T { if data.len == 0 { return T(0) } mut freqs := []int{} for v in data { freqs << freq(data, v) } mut max := 0 for i := 0; i < freqs.len; i++ { if freqs[i] > freqs[max] { max = i } } return data[max] } // Root Mean Square of the given input array // Based on // https://en.wikipedia.org/wiki/Root_mean_square pub fn rms<T>(data []T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += math.pow(v, 2) } return math.sqrt(sum / T(data.len)) } // Measure of Dispersion / Spread // Population Variance of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn population_variance<T>(data []T) T { if data.len == 0 { return T(0) } data_mean := mean<T>(data) return population_variance_mean<T>(data, data_mean) } // Measure of Dispersion / Spread // Population Variance of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html pub fn population_variance_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += (v - mean) * (v - mean) } return sum / T(data.len) } // Measure of Dispersion / Spread // Sample Variance of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn sample_variance<T>(data []T) T { if data.len == 0 { return T(0) } data_mean := mean<T>(data) return sample_variance_mean<T>(data, data_mean) } // Measure of Dispersion / Spread // Sample Variance of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html pub fn sample_variance_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += (v - mean) * (v - mean) } return sum / T(data.len - 1) } // Measure of Dispersion / Spread // Population Standard Deviation of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn population_stddev<T>(data []T) T { if data.len == 0 { return T(0) } return math.sqrt(population_variance<T>(data)) } // Measure of Dispersion / Spread // Population Standard Deviation of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn population_stddev_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } return T(math.sqrt(f64(population_variance_mean<T>(data, mean)))) } // Measure of Dispersion / Spread // Sample Standard Deviation of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn sample_stddev<T>(data []T) T { if data.len == 0 { return T(0) } return T(math.sqrt(f64(sample_variance<T>(data)))) } // Measure of Dispersion / Spread // Sample Standard Deviation of the given input array // Based on // https://www.mathsisfun.com/data/standard-deviation.html [inline] pub fn sample_stddev_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } return T(math.sqrt(f64(sample_variance_mean<T>(data, mean)))) } // Measure of Dispersion / Spread // Mean Absolute Deviation of the given input array // Based on // https://en.wikipedia.org/wiki/Average_absolute_deviation [inline] pub fn absdev<T>(data []T) T { if data.len == 0 { return T(0) } data_mean := mean<T>(data) return absdev_mean<T>(data, data_mean) } // Measure of Dispersion / Spread // Mean Absolute Deviation of the given input array // Based on // https://en.wikipedia.org/wiki/Average_absolute_deviation pub fn absdev_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } mut sum := T(0) for v in data { sum += math.abs(v - mean) } return sum / T(data.len) } // Sum of squares [inline] pub fn tss<T>(data []T) T { if data.len == 0 { return T(0) } data_mean := mean<T>(data) return tss_mean<T>(data, data_mean) } // Sum of squares about the mean pub fn tss_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } mut tss := T(0) for v in data { tss += (v - mean) * (v - mean) } return tss } // Minimum of the given input array pub fn min<T>(data []T) T { if data.len == 0 { return T(0) } mut min := data[0] for v in data { if v < min { min = v } } return min } // Maximum of the given input array pub fn max<T>(data []T) T { if data.len == 0 { return T(0) } mut max := data[0] for v in data { if v > max { max = v } } return max } // Minimum and maximum of the given input array pub fn minmax<T>(data []T) (T, T) { if data.len == 0 { return T(0), T(0) } mut max := data[0] mut min := data[0] for v in data[1..] { if v > max { max = v } if v < min { min = v } } return min, max } // Minimum of the given input array pub fn min_index<T>(data []T) int { if data.len == 0 { return 0 } mut min := data[0] mut min_index := 0 for i, v in data { if v < min { min = v min_index = i } } return min_index } // Maximum of the given input array pub fn max_index<T>(data []T) int { if data.len == 0 { return 0 } mut max := data[0] mut max_index := 0 for i, v in data { if v > max { max = v max_index = i } } return max_index } // Minimum and maximum of the given input array pub fn minmax_index<T>(data []T) (int, int) { if data.len == 0 { return 0, 0 } mut min := data[0] mut max := data[0] mut min_index := 0 mut max_index := 0 for i, v in data { if v < min { min = v min_index = i } if v > max { max = v max_index = i } } return min_index, max_index } // Measure of Dispersion / Spread // Range ( Maximum - Minimum ) of the given input array // Based on // https://www.mathsisfun.com/data/range.html pub fn range<T>(data []T) T { if data.len == 0 { return T(0) } min, max := minmax<T>(data) return max - min } [inline] pub fn covariance<T>(data1 []T, data2 []T) T { mean1 := mean<T>(data1) mean2 := mean<T>(data2) return covariance_mean<T>(data1, data2, mean1, mean2) } // Compute the covariance of a dataset using // the recurrence relation pub fn covariance_mean<T>(data1 []T, data2 []T, mean1 T, mean2 T) T { n := int(math.min(data1.len, data2.len)) if n == 0 { return T(0) } mut covariance := T(0) for i in 0 .. n { delta1 := data1[i] - mean1 delta2 := data2[i] - mean2 covariance += (delta1 * delta2 - covariance) / (T(i) + 1.0) } return covariance } [inline] pub fn lag1_autocorrelation<T>(data []T) T { data_mean := mean<T>(data) return lag1_autocorrelation_mean<T>(data, data_mean) } // Compute the lag-1 autocorrelation of a dataset using // the recurrence relation pub fn lag1_autocorrelation_mean<T>(data []T, mean T) T { if data.len == 0 { return T(0) } mut q := T(0) mut v := (data[0] * mean) - (data[0] * mean) for i := 1; i < data.len; i++ { delta0 := data[i - 1] - mean delta1 := data[i] - mean q += (delta0 * delta1 - q) / (T(i) + 1.0) v += (delta1 * delta1 - v) / (T(i) + 1.0) } return q / v } [inline] pub fn kurtosis<T>(data []T) T { data_mean := mean<T>(data) sd := population_stddev_mean<T>(data, data_mean) return kurtosis_mean_stddev<T>(data, data_mean, sd) } // Takes a dataset and finds the kurtosis // using the fourth moment the deviations, normalized by the sd pub fn kurtosis_mean_stddev<T>(data []T, mean T, sd T) T { mut avg := T(0) // find the fourth moment the deviations, normalized by the sd /* we use a recurrence relation to stably update a running value so * there aren't any large sums that can overflow */ for i, v in data { x := (v - mean) / sd avg += (x * x * x * x - avg) / (T(i) + 1.0) } return avg - T(3.0) } [inline] pub fn skew<T>(data []T) T { data_mean := mean<T>(data) sd := population_stddev_mean<T>(data, data_mean) return skew_mean_stddev<T>(data, data_mean, sd) } pub fn skew_mean_stddev<T>(data []T, mean T, sd T) T { mut skew := T(0) // find the sum of the cubed deviations, normalized by the sd. /* we use a recurrence relation to stably update a running value so * there aren't any large sums that can overflow */ for i, v in data { x := (v - mean) / sd skew += (x * x * x - skew) / (T(i) + 1.0) } return skew } pub fn quantile<T>(sorted_data []T, f T) T { if sorted_data.len == 0 { return T(0) } index := f * (T(sorted_data.len) - 1.0) lhs := int(index) delta := index - T(lhs) return if lhs == sorted_data.len - 1 { sorted_data[lhs] } else { (1.0 - delta) * sorted_data[lhs] + delta * sorted_data[(lhs + 1)] } }