// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module time import rand const ( MonthDays = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] ) #include struct Time { pub: year int month int day int hour int minute int second int uni int // TODO it's safe to use "unix" now } fn C.localtime(int) &C.tm fn remove_me_when_c_bug_is_fixed() { // TODO } struct C.tm { tm_year int tm_mon int tm_mday int tm_hour int tm_min int tm_sec int } fn C.time(int) C.time_t pub fn now() Time { t := C.time(0) mut now := &C.tm{!} now = C.localtime(&t) return convert_ctime(now) } pub fn random() Time { now_unix := now().uni rand_unix := rand.next(now_unix) return time.unix(rand_unix) } const ( // The unsigned zero year for internal calculations. // Must be 1 mod 400, and times before it will not compute correctly, // but otherwise can be changed at will. absoluteZeroYear = i64(-292277022399) secondsPerMinute = 60 secondsPerHour = 60 * secondsPerMinute secondsPerDay = 24 * secondsPerHour secondsPerWeek = 7 * secondsPerDay daysPer400Years = 365*400 + 97 daysPer100Years = 365*100 + 24 daysPer4Years = 365*4 + 1 daysBefore = [ 0, 31, 31 + 28, 31 + 28 + 31, 31 + 28 + 31 + 30, 31 + 28 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, ] ) // Based on Go's time package. // Copyright 2009 The Go Authors. pub fn unix(abs int) Time { // Split into time and day. mut d := abs / secondsPerDay // Account for 400 year cycles. mut n := d / daysPer400Years mut y := 400 * n d -= daysPer400Years * n // Cut off 100-year cycles. // The last cycle has one extra leap year, so on the last day // of that year, day / daysPer100Years will be 4 instead of 3. // Cut it back down to 3 by subtracting n>>2. n = d / daysPer100Years n -= n >> 2 y += 100 * n d -= daysPer100Years * n // Cut off 4-year cycles. // The last cycle has a missing leap year, which does not // affect the computation. n = d / daysPer4Years y += 4 * n d -= daysPer4Years * n // Cut off years within a 4-year cycle. // The last year is a leap year, so on the last day of that year, // day / 365 will be 4 instead of 3. Cut it back down to 3 // by subtracting n>>2. n = d / 365 n -= n >> 2 y += n d -= 365 * n yday := int(d) mut day := yday year := abs / int(3.154e+7) + 1970 //int(i64(y) + absoluteZeroYear) hour := int(abs%secondsPerDay) / secondsPerHour minute := int(abs % secondsPerHour) / secondsPerMinute second := int(abs % secondsPerMinute) if is_leap_year(year) { // Leap year if day > 31+29-1 { // After leap day; pretend it wasn't there. day-- } else if day == 31+29-1 { // Leap day. day = 29 return Time{year:year, month:2, day:day, hour:hour, minute: minute, second: second} } } // Estimate month on assumption that every month has 31 days. // The estimate may be too low by at most one month, so adjust. mut month := day / 31 mut begin := 0 end := int(daysBefore[month+1]) if day >= end { month++ begin = end } else { begin = int(daysBefore[month]) } month++ // because January is 1 day = day - begin + 1 return Time{year:year, month: month, day:day, hour:hour, minute: minute, second: second} } pub fn convert_ctime(t tm) Time { return Time { year: t.tm_year + 1900 month: t.tm_mon + 1 day: t.tm_mday hour: t.tm_hour minute: t.tm_min second: t.tm_sec uni: C.mktime(&t) } } pub fn (t Time) format_ss() string { return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}:${t.second:02d}' } pub fn (t Time) format() string { return '${t.year}-${t.month:02d}-${t.day:02d} ${t.hour:02d}:${t.minute:02d}' } const ( Months = 'JanFebMarAprMayJunJulAugSepOctNovDec' Days = 'MonTueWedThuFriSatSun' ) pub fn (t Time) smonth() string { i := t.month - 1 return Months.substr(i * 3, (i + 1) * 3) } // 21:04 pub fn (t Time) hhmm() string { return '${t.hour:02d}:${t.minute:02d}' } /* fn (t Time) hhmm_tmp() string { return '${t.hour:02d}:${t.minute:02d}' } */ // 9:04pm pub fn (t Time) hhmm12() string { mut am := 'am' mut hour := t.hour if t.hour > 11 { am = 'pm' } if t.hour > 12 { hour = hour - 12 } if t.hour == 0 { hour = 12 } return '$hour:${t.minute:02d} $am' } // 21:04:03 pub fn (t Time) hhmmss() string { return '${t.hour:02d}:${t.minute:02d}:${t.second:02d}' } // 2012-01-05 pub fn (t Time) ymmdd() string { return '${t.year}-${t.month:02d}-${t.day:02d}' } // Jul 3 pub fn (t Time) md() string { // jl := t.smonth() s := '${t.smonth()} $t.day' return s } pub fn (t Time) clean() string { nowe := time.now() // if amtime { // hm = t.Format("3:04 pm") // } // Today if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day { return t.hhmm() } // This week // if time.Since(t) < 24*7*time.Hour { // return t.Weekday().String()[:3] + " " + hm // } // This year if t.year == nowe.year { return '${t.smonth()} ${t.day} ${t.hhmm()}' } return t.format() // return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm } pub fn (t Time) clean12() string { nowe := time.now() // if amtime { // hm = t.Format("3:04 pm") // } // Today if t.month == nowe.month && t.year == nowe.year && t.day == nowe.day { return t.hhmm12() } // This week // if time.Since(t) < 24*7*time.Hour { // return t.Weekday().String()[:3] + " " + hm // } // This year if t.year == nowe.year { return '${t.smonth()} ${t.day} ${t.hhmm12()}' } return t.format() // return fmt.Sprintf("%4d/%02d/%02d", t.Year(), t.Month(), t.Day()) + " " + hm } // `parse` parses time in the following format: "2018-01-27 12:48:34" pub fn parse(s string) Time { // println('parse="$s"') pos := s.index(' ') if pos <= 0 { println('bad time format') return now() } symd := s.left(pos) ymd := symd.split('-') if ymd.len != 3 { println('bad time format') return now() } shms := s.right(pos) hms := shms.split(':') hour := hms[0] minute := hms[1] second := hms[2] // ////////// return new_time(Time { year: ymd[0].int() month: ymd[1].int() day: ymd[2].int() hour: hour.int() minute: minute.int() second: second.int() }) } pub fn new_time(t Time) Time { return{t | uni: t.calc_unix()} } pub fn (t &Time) calc_unix() int { if t.uni != 0 { return t.uni } tt := C.tm{ tm_sec : t.second tm_min : t.minute tm_hour : t.hour tm_mday : t.day tm_mon : t.month-1 tm_year : t.year - 1900 } return C.mktime(&tt) } // TODO add(d time.Duration) pub fn (t Time) add_seconds(seconds int) Time { return unix(t.uni + seconds) } // TODO use time.Duration instead of seconds fn since(t Time) int { return 0 } pub fn (t Time) relative() string { now := time.now() secs := now.uni - t.uni if secs <= 30 { // right now or in the future // TODO handle time in the future return 'now' } if secs < 60 { return '1m' } if secs < 3600 { return '${secs/60}m' } if secs < 3600 * 24 { return '${secs/3600}h' } if secs < 3600 * 24 * 5 { return '${secs/3600/24}d' } if secs > 3600 * 24 * 10000 { return '' } return t.md() } pub fn day_of_week(y, m, d int) int { // Sakomotho's algorithm is explained here: // https://stackoverflow.com/a/6385934 t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4] mut sy := y if (m < 3) { sy = sy - 1 } return ( sy + sy/4 - sy/100 + sy/400 + t[m-1] + d - 1) % 7 + 1 } pub fn (t Time) day_of_week() int { return day_of_week(t.year, t.month, t.day) } // weekday_str() returns the current day in string (upto 3 characters) pub fn (t Time) weekday_str() string { i := t.day_of_week() - 1 return Days.substr(i * 3, (i + 1) * 3) } struct C.timeval { tv_sec int tv_usec int } // in ms pub fn ticks() i64 { $if windows { return C.GetTickCount() } $else { ts := C.timeval{} C.gettimeofday(&ts,0) return ts.tv_sec * 1000 + (ts.tv_usec / 1000) } /* t := i64(C.mach_absolute_time()) # Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t ); # return (double)(* (uint64_t *) &elapsedNano) / 1000000; */ } pub fn sleep(seconds int) { $if windows { C._sleep(seconds * 1000) } $else { C.sleep(seconds) } } pub fn usleep(n int) { $if windows { //C._usleep(n) } $else { C.usleep(n) } } pub fn sleep_ms(n int) { $if windows { C.Sleep(n) } $else { C.usleep(n * 1000) } } // Determine whether a year is a leap year. pub fn is_leap_year(year int) bool { return (year%4 == 0) && (year%100 != 0 || year%400 == 0) } // Returns number of days in month pub fn days_in_month(month, year int) ?int { if month > 12 || month < 1 { return error('Invalid month: $month') } extra := if month == 2 && is_leap_year(year) {1} else {0} res := MonthDays[month-1] + extra return res }