1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/examples/tetris/tetris.v
2020-06-01 13:04:46 +02:00

468 lines
9.6 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module main
import rand
import time
import gx
import gg2 as gg
import sokol
import sokol.sapp
import math
import freetype
const (
block_size = 20 // pixels
field_height = 20 // # of blocks
field_width = 10
tetro_size = 4
win_width = block_size * field_width
win_height = block_size * field_height
timer_period = 250 // ms
text_size = 12
limit_thickness = 3
)
const (
text_cfg = gx.TextCfg{
align:gx.align_left
size:text_size
color:gx.rgb(0, 0, 0)
}
over_cfg = gx.TextCfg{
align:gx.align_left
size:text_size
color:gx.white
}
)
const (
// Tetros' 4 possible states are encoded in binaries
b_tetros = [
// 0000 0
// 0000 0
// 0110 6
// 0110 6
[66, 66, 66, 66],
// 0000 0
// 0000 0
// 0010 2
// 0111 7
[27, 131, 72, 232],
// 0000 0
// 0000 0
// 0011 3
// 0110 6
[36, 231, 36, 231],
// 0000 0
// 0000 0
// 0110 6
// 0011 3
[63, 132, 63, 132],
// 0000 0
// 0011 3
// 0001 1
// 0001 1
[311, 17, 223, 74],
// 0000 0
// 0011 3
// 0010 2
// 0010 2
[322, 71, 113, 47],
// Special case since 15 can't be used
// 1111
[1111, 9, 1111, 9],
]
// Each tetro has its unique color
colors = [
gx.rgb(0, 0, 0), // unused ?
gx.rgb(255, 242, 0), // yellow quad
gx.rgb(174, 0, 255), // purple triple
gx.rgb(60, 255, 0), // green short topright
gx.rgb(255, 0, 0), // red short topleft
gx.rgb(255, 180, 31), // orange long topleft
gx.rgb(33, 66, 255), // blue long topright
gx.rgb(74, 198, 255), // lightblue longest
gx.rgb(0, 170, 170), // unused ?
]
background_color = gx.white
ui_color = gx.red
)
// TODO: type Tetro [tetro_size]struct{ x, y int }
struct Block {
mut:
x int
y int
}
enum GameState {
paused running gameover
}
struct Game {
mut:
// Score of the current game
score int
// State of the current game
state GameState
// Position of the current tetro
pos_x int
pos_y int
// field[y][x] contains the color of the block with (x,y) coordinates
// "-1" border is to avoid bounds checking.
// -1 -1 -1 -1
// -1 0 0 -1
// -1 0 0 -1
// -1 -1 -1 -1
field [][]int
// TODO: tetro Tetro
tetro []Block
// TODO: tetros_cache []Tetro
tetros_cache []Block
// Index of the current tetro. Refers to its color.
tetro_idx int
// Index of the rotation (0-3)
rotation_idx int
// gg context for drawing
gg &gg.GG
// ft context for font drawing
ft &freetype.FreeType
font_loaded bool
}
fn frame(game &Game) {
game.gg.begin()
game.draw_scene()
game.gg.end()
}
fn main() {
mut game := &Game{}
game.gg = gg.new_context(
bg_color: gx.white
width: win_width
height: win_height
use_ortho: true // This is needed for 2D drawing
create_window: true
window_title: 'V tetris'
frame_fn: frame
user_data: game
//on_key_down: key_down
event_cb: on_event
)
//font_path: os.resource_abs_path('assets/fonts/RobotoMono-Regular.ttf')
/*
gconfig := gg.Config{
width: win_width
height: win_height
use_ortho: true // This is needed for 2D drawing
create_window: true
window_title: 'V Tetris'
//window_user_ptr: game
}
fconfig := gg.Config{
width: win_width
height: win_height
use_ortho: true
font_path: '../assets/fonts/RobotoMono-Regular.ttf'
font_size: 18
scale: 2
window_user_ptr: 0
}
mut game := &Game{
gg: gg.new_context(gconfig)
ft: freetype.new_context(fconfig)
}
*/
//game.gg.window.set_user_ptr(game) // TODO remove this when `window_user_ptr:` works
game.init_game()
//game.gg.window.onkeydown(key_down)
go game.run() // Run the game loop in a new thread
game.gg.run() // Run the render loop in the main thread
/*
game.font_loaded = game.ft != 0
for {
game.draw_scene()
game.gg.render()
if game.gg.window.should_close() {
game.gg.window.destroy()
return
}
}
*/
}
fn (mut g Game) init_game() {
g.parse_tetros()
rand.seed(time.now().unix)
g.generate_tetro()
g.field = [] // TODO: g.field = [][]int
// Generate the field, fill it with 0's, add -1's on each edge
for _ in 0..field_height + 2 {
mut row := [0].repeat(field_width + 2)
row[0] = - 1
row[field_width + 1] = - 1
g.field << row
}
mut first_row := g.field[0]
mut last_row := g.field[field_height + 1]
for j in 0..field_width + 2 {
first_row[j] = - 1
last_row[j] = - 1
}
g.score = 0
g.state = .running
}
fn (mut g Game) parse_tetros() {
for b_tetros0 in b_tetros {
for b_tetro in b_tetros0 {
for t in parse_binary_tetro(b_tetro) {
g.tetros_cache << t
}
}
}
}
fn (mut g Game) run() {
for {
if g.state == .running {
g.move_tetro()
g.delete_completed_lines()
}
//glfw.post_empty_event() // force window redraw
time.sleep_ms(timer_period)
}
}
fn (mut g Game) move_tetro() {
// Check each block in current tetro
for block in g.tetro {
y := block.y + g.pos_y + 1
x := block.x + g.pos_x
// Reached the bottom of the screen or another block?
// TODO: if g.field[y][x] != 0
//if g.field[y][x] != 0 {
row := g.field[y]
if row[x] != 0 {
// The new tetro has no space to drop => end of the game
if g.pos_y < 2 {
g.state = .gameover
return
}
// Drop it and generate a new one
g.drop_tetro()
g.generate_tetro()
return
}
}
g.pos_y++
}
fn (mut g Game) move_right(dx int) bool {
// Reached left/right edge or another tetro?
for i in 0..tetro_size {
tetro := g.tetro[i]
y := tetro.y + g.pos_y
x := tetro.x + g.pos_x + dx
row := g.field[y]
if row[x] != 0 {
// Do not move
return false
}
}
g.pos_x += dx
return true
}
fn (mut g Game) delete_completed_lines() {
for y := field_height; y >= 1; y-- {
g.delete_completed_line(y)
}
}
fn (mut g Game) delete_completed_line(y int) {
for x := 1; x <= field_width; x++ {
f := g.field[y]
if f[x] == 0 {
return
}
}
g.score += 10
// Move everything down by 1 position
for yy := y - 1; yy >= 1; yy-- {
for x := 1; x <= field_width; x++ {
mut a := g.field[yy + 1]
b := g.field[yy]
a[x] = b[x]
}
}
}
// Place a new tetro on top
fn (mut g Game) generate_tetro() {
g.pos_y = 0
g.pos_x = field_width / 2 - tetro_size / 2
g.tetro_idx = rand.next(b_tetros.len)
g.rotation_idx = 0
g.get_tetro()
}
// Get the right tetro from cache
fn (mut g Game) get_tetro() {
idx := g.tetro_idx * tetro_size * tetro_size + g.rotation_idx * tetro_size
g.tetro = g.tetros_cache[idx..idx+tetro_size]
}
// TODO mut
fn (g &Game) drop_tetro() {
for i in 0..tetro_size{
tetro := g.tetro[i]
x := tetro.x + g.pos_x
y := tetro.y + g.pos_y
// Remember the color of each block
// TODO: g.field[y][x] = g.tetro_idx + 1
mut row := g.field[y]
row[x] = g.tetro_idx + 1
}
}
fn (g &Game) draw_tetro() {
for i in 0..tetro_size {
tetro := g.tetro[i]
g.draw_block(g.pos_y + tetro.y, g.pos_x + tetro.x, g.tetro_idx + 1)
}
}
fn (g &Game) draw_block(i, j, color_idx int) {
color := if g.state == .gameover { gx.gray } else { colors[color_idx] }
g.gg.draw_rect((j - 1) * block_size, (i - 1) * block_size,
block_size - 1, block_size - 1, color)
}
fn (g &Game) draw_field() {
for i := 1; i < field_height + 1; i++ {
for j := 1; j < field_width + 1; j++ {
f := g.field[i]
if f[j] > 0 {
g.draw_block(i, j, f[j])
}
}
}
}
fn (mut g Game) draw_ui() {
if g.font_loaded {
g.ft.draw_text(1, 3, g.score.str(), text_cfg)
if g.state == .gameover {
g.gg.draw_rect(0, win_height / 2 - text_size, win_width,
5 * text_size, ui_color)
g.ft.draw_text(1, win_height / 2 + 0 * text_size, 'Game Over', over_cfg)
g.ft.draw_text(1, win_height / 2 + 2 * text_size, 'Space to restart', over_cfg)
} else if g.state == .paused {
g.gg.draw_rect(0, win_height / 2 - text_size, win_width,
5 * text_size, ui_color)
g.ft.draw_text(1, win_height / 2 + 0 * text_size, 'Game Paused', text_cfg)
g.ft.draw_text(1, win_height / 2 + 2 * text_size, 'SPACE to resume', text_cfg)
}
}
//g.gg.draw_rect(0, block_size, win_width, limit_thickness, ui_color)
}
fn (mut g Game) draw_scene() {
g.draw_tetro()
g.draw_field()
g.draw_ui()
}
fn parse_binary_tetro(t_ int) []Block {
mut t := t_
res := [Block{}].repeat(4)
mut cnt := 0
horizontal := t == 9// special case for the horizontal line
for i := 0; i <= 3; i++ {
// Get ith digit of t
p := int(math.pow(10, 3 - i))
mut digit := t / p
t %= p
// Convert the digit to binary
for j := 3; j >= 0; j-- {
bin := digit % 2
digit /= 2
if bin == 1 || (horizontal && i == tetro_size - 1) {
// TODO: res[cnt].x = j
// res[cnt].y = i
mut point := &res[cnt]
point.x = j
point.y = i
cnt++
}
}
}
return res
}
fn on_event(e &sapp.Event, game mut Game) {
if e.typ == .key_down {
game.key_down(e.key_code)
}
}
fn (mut game Game) key_down(key sapp.KeyCode) {
// global keys
match key {
.escape {
exit(0)
}
.space {
if game.state == .running {
game.state = .paused
} else if game.state == .paused {
game.state = .running
} else if game.state == .gameover {
game.init_game()
game.state = .running
}
}
else {}
}
if game.state != .running {
return
}
// keys while game is running
match key {
.up {
// Rotate the tetro
old_rotation_idx := game.rotation_idx
game.rotation_idx++
if game.rotation_idx == tetro_size {
game.rotation_idx = 0
}
game.get_tetro()
if !game.move_right(0) {
game.rotation_idx = old_rotation_idx
game.get_tetro()
}
if game.pos_x < 0 {
//game.pos_x = 1
}
}
.left {
game.move_right(-1)
}
.right {
game.move_right(1)
}
.down {
game.move_tetro() // drop faster when the player presses <down>
}
else { }
}
}