1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/time/time.v
Enzo b083f4014b
fmt: fix multiple things and format most of the compiler (#6631)
Format expressions inside string interpolation like the rest (it used to be a+b instead of a + b, not too sure why)
Fix formatting some match branches when there were only one statement inside (it was inlined)
Fix parsing and formatting some comments edge case on struct field init. You should check out this test because the result is a bit different from before. I personally find it more logical but I would understand if the former format was to stay
Fix formatting of void-returning function signature
2020-10-15 22:12:59 +02:00

414 lines
9.2 KiB
V

// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module time
#include <time.h>
const (
days_string = 'MonTueWedThuFriSatSun'
month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
months_string = 'JanFebMarAprMayJunJulAugSepOctNovDec'
// The unsigned zero year for internal calculations.
// Must be 1 mod 400, and times before it will not compute correctly,
// but otherwise can be changed at will.
absolute_zero_year = i64(-292277022399) // as i64
seconds_per_minute = 60
seconds_per_hour = 60 * seconds_per_minute
seconds_per_day = 24 * seconds_per_hour
seconds_per_week = 7 * seconds_per_day
days_per_400_years = 365 * 400 + 97
days_per_100_years = 365 * 100 + 24
days_per_4_years = 365 * 4 + 1
days_before = [
0,
31,
31 + 28,
31 + 28 + 31,
31 + 28 + 31 + 30,
31 + 28 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
]
long_days = ['Monday', 'Tuesday', 'Wednesday', 'Thusday', 'Friday', 'Saturday', 'Sunday']
)
pub struct Time {
pub:
year int
month int
day int
hour int
minute int
second int
microsecond int
unix u64
}
pub enum FormatTime {
hhmm12
hhmm24
hhmmss12
hhmmss24
hhmmss24_milli
hhmmss24_micro
no_time
}
pub enum FormatDate {
ddmmyy
ddmmyyyy
mmddyy
mmddyyyy
mmmd
mmmdd
mmmddyyyy
no_date
yyyymmdd
}
pub enum FormatDelimiter {
dot
hyphen
slash
space
no_delimiter
}
pub struct C.timeval {
tv_sec u64
tv_usec u64
}
fn C.localtime(t &C.time_t) &C.tm
fn C.time(t &C.time_t) C.time_t
// now returns current local time.
pub fn now() Time {
$if macos {
return darwin_now()
}
$if windows {
return win_now()
}
$if solaris {
return solaris_now()
}
$if linux || android {
return linux_now()
}
// defaults to most common feature, the microsecond precision is not available
// in this API call
t := C.time(0)
now := C.localtime(&t)
return convert_ctime(now, 0)
}
// utc returns the current time in utc
pub fn utc() Time {
$if macos {
return darwin_utc()
}
$if windows {
return win_utc()
}
$if solaris {
return solaris_utc()
}
$if linux || android {
return linux_utc()
}
// defaults to most common feature, the microsecond precision is not available
// in this API call
t := C.time(0)
_ = C.time(&t)
return unix2(int(t), 0)
}
// smonth returns month name.
pub fn (t Time) smonth() string {
if t.month <= 0 || t.month > 12 {
return '---'
}
i := t.month - 1
return months_string[i * 3..(i + 1) * 3]
}
// new_time returns a time struct with calculated Unix time.
pub fn new_time(t Time) Time {
if t.unix != 0 {
return t
}
tt := C.tm{
tm_sec: t.second
tm_min: t.minute
tm_hour: t.hour
tm_mday: t.day
tm_mon: t.month - 1
tm_year: t.year - 1900
}
utime := u64(make_unix_time(tt))
return {
t |
unix: utime
}
}
// unix_time returns Unix time.
[inline]
pub fn (t Time) unix_time() int {
return int(t.unix)
}
// unix_time_milli returns Unix time with millisecond resolution.
[inline]
pub fn (t Time) unix_time_milli() u64 {
return t.unix * 1000 + u64(t.microsecond / 1000)
}
// add_seconds returns a new time struct with an added number of seconds.
pub fn (t Time) add_seconds(seconds int) Time {
// TODO Add(d time.Duration)
return unix(int(t.unix + u64(seconds)))
}
// add_days returns a new time struct with an added number of days.
pub fn (t Time) add_days(days int) Time {
return unix(int(t.unix + u64(i64(days) * 3600 * 24)))
}
// since returns a number of seconds elapsed since a given time.
fn since(t Time) int {
// TODO Use time.Duration instead of seconds
return 0
}
// relative returns a string representation of difference between time
// and current time.
pub fn (t Time) relative() string {
znow := now()
secs := znow.unix - t.unix
if secs <= 30 {
// right now or in the future
// TODO handle time in the future
return 'now'
}
if secs < 60 {
return '1m'
}
if secs < 3600 {
m := secs / 60
if m == 1 {
return '1 minute ago'
}
return '$m minutes ago'
}
if secs < 3600 * 24 {
h := secs / 3600
if h == 1 {
return '1 hour ago'
}
return '$h hours ago'
}
if secs < 3600 * 24 * 5 {
d := secs / 3600 / 24
if d == 1 {
return '1 day ago'
}
return '$d days ago'
}
if secs > 3600 * 24 * 10000 {
return ''
}
return t.md()
}
pub fn (t Time) relative_short() string {
znow := now()
secs := znow.unix - t.unix
if secs <= 30 {
// right now or in the future
// TODO handle time in the future
return 'now'
}
if secs < 60 {
return '1m'
}
if secs < 3600 {
return '${secs / 60}m'
}
if secs < 3600 * 24 {
return '${secs / 3600}h'
}
if secs < 3600 * 24 * 5 {
return '${secs / 3600 / 24}d'
}
if secs > 3600 * 24 * 10000 {
return ''
}
return t.md()
}
// day_of_week returns the current day of a given year, month, and day,
// as an integer.
pub fn day_of_week(y int, m int, d int) int {
// Sakomotho's algorithm is explained here:
// https://stackoverflow.com/a/6385934
t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4]
mut sy := y
if m < 3 {
sy = sy - 1
}
return (sy + sy / 4 - sy / 100 + sy / 400 + t[m - 1] + d - 1) % 7 + 1
}
// day_of_week returns the current day as an integer.
pub fn (t Time) day_of_week() int {
return day_of_week(t.year, t.month, t.day)
}
// weekday_str returns the current day as a string.
pub fn (t Time) weekday_str() string {
i := t.day_of_week() - 1
return days_string[i * 3..(i + 1) * 3]
}
// weekday_str returns the current day as a string.
pub fn (t Time) long_weekday_str() string {
i := t.day_of_week() - 1
return long_days[i]
}
// ticks returns a number of milliseconds elapsed since system start.
pub fn ticks() i64 {
$if windows {
return C.GetTickCount()
} $else {
ts := C.timeval{}
C.gettimeofday(&ts, 0)
return i64(ts.tv_sec * u64(1000) + (ts.tv_usec / u64(1000)))
}
// t := i64(C.mach_absolute_time())
// # Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t );
// # return (double)(* (uint64_t *) &elapsedNano) / 1000000;
}
// sleep makes the calling thread sleep for a given number of seconds.
pub fn sleep(seconds int) {
$if windows {
C.Sleep(seconds * 1000)
} $else {
C.sleep(seconds)
}
}
// sleep_ms makes the calling thread sleep for a given number of milliseconds.
pub fn sleep_ms(milliseconds int) {
$if windows {
C.Sleep(milliseconds)
} $else {
C.usleep(milliseconds * 1000)
}
}
// usleep makes the calling thread sleep for a given number of microseconds.
pub fn usleep(microseconds int) {
$if windows {
milliseconds := microseconds / 1000
C.Sleep(milliseconds)
} $else {
C.usleep(microseconds)
}
}
// is_leap_year checks if a given a year is a leap year.
pub fn is_leap_year(year int) bool {
return (year % 4 == 0) && (year % 100 != 0 || year % 400 == 0)
}
// days_in_month returns a number of days in a given month.
pub fn days_in_month(month int, year int) ?int {
if month > 12 || month < 1 {
return error('Invalid month: $month')
}
extra := if month == 2 && is_leap_year(year) { 1 } else { 0 }
res := month_days[month - 1] + extra
return res
}
// str returns time in the same format as `parse` expects ("YYYY-MM-DD HH:MM:SS").
pub fn (t Time) str() string {
// TODO Define common default format for
// `str` and `parse` and use it in both ways
return t.format_ss()
}
fn convert_ctime(t C.tm, microsecond int) Time {
return Time{
year: t.tm_year + 1900
month: t.tm_mon + 1
day: t.tm_mday
hour: t.tm_hour
minute: t.tm_min
second: t.tm_sec
microsecond: microsecond
unix: u64(make_unix_time(t))
}
}
// A lot of these are taken from the Go library
pub type Duration = i64
pub const (
nanosecond = Duration(1)
microsecond = Duration(1000) * nanosecond
millisecond = Duration(1000) * microsecond
second = Duration(1000) * millisecond
minute = Duration(60) * second
hour = Duration(60) * minute
infinite = Duration(-1)
)
// nanoseconds returns the duration as an integer number of nanoseconds.
pub fn (d Duration) nanoseconds() i64 {
return i64(d)
}
// microseconds returns the duration as an integer number of microseconds.
pub fn (d Duration) microseconds() i64 {
return i64(d) / 1000
}
// milliseconds returns the duration as an integer number of milliseconds.
pub fn (d Duration) milliseconds() i64 {
return i64(d) / 1000000
}
// The following functions return floating point numbers because it's common to
// consider all of them in sub-one intervals
// seconds returns the duration as a floating point number of seconds.
pub fn (d Duration) seconds() f64 {
sec := d / second
nsec := d % second
return f64(sec) + f64(nsec) / 1e9
}
// minutes returns the duration as a floating point number of minutes.
pub fn (d Duration) minutes() f64 {
min := d / minute
nsec := d % minute
return f64(min) + f64(nsec) / (60 * 1e9)
}
// hours returns the duration as a floating point number of hours.
pub fn (d Duration) hours() f64 {
hr := d / hour
nsec := d % hour
return f64(hr) + f64(nsec) / (60 * 60 * 1e9)
}