1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/crypto
2022-03-06 20:01:22 +03:00
..
aes crypto: crypto.aes CBC mode moves to crypto.cipher (#13084) 2022-01-08 17:08:46 +02:00
bcrypt crypto: implement rand.bytes(needed_bytes int) ?[]byte, use it consistently instead of the old rand.read(), which will change to be compatible with io and the pseudo random rand module 2022-02-15 18:39:33 +02:00
blowfish
cipher crypto: implement Output Feedback (OFB) Mode for AES and DES (#13583) 2022-02-24 14:38:21 +02:00
des crypto: add a crypto.des module (#13065) 2022-01-07 13:51:37 +02:00
ed25519 all: replace "NB:" with "Note:" (docs/comments) 2022-03-06 20:01:22 +03:00
hmac all: replace "NB:" with "Note:" (docs/comments) 2022-03-06 20:01:22 +03:00
internal/subtle all: update copyright year 2022-01-04 12:21:12 +03:00
md5 all: update copyright year 2022-01-04 12:21:12 +03:00
rand all: replace "NB:" with "Note:" (docs/comments) 2022-03-06 20:01:22 +03:00
rc4 all: update copyright year 2022-01-04 12:21:12 +03:00
sha1 all: update copyright year 2022-01-04 12:21:12 +03:00
sha256 crypto.sha512, crypto.sha256 : Make public the write() and sum() methods (#13461) 2022-02-14 00:10:50 +02:00
sha512 crypto.sha512, crypto.sha256 : Make public the write() and sum() methods (#13461) 2022-02-14 00:10:50 +02:00
crypto.v
README.md crypto: implement rand.bytes(needed_bytes int) ?[]byte, use it consistently instead of the old rand.read(), which will change to be compatible with io and the pseudo random rand module 2022-02-15 18:39:33 +02:00

Description:

crypto is a module that exposes cryptographic algorithms to V programs.

Each submodule implements things differently, so be sure to consider the documentation of the specific algorithm you need, but in general, the method is to create a cipher struct using one of the module functions, and then to call the encrypt or decrypt method on that struct to actually encrypt or decrypt your data.

This module is a work-in-progress. For example, the AES implementation currently requires you to create a destination buffer of the correct size to receive the decrypted data, and the AesCipher encrypt and decrypt functions only operate on the first block of the src.

The implementations here are loosely based on Go's crypto package.

Examples:

import crypto.aes
import crypto.rand

fn main() {
	// remember to save this key somewhere if you ever want to decrypt your data
	key := rand.bytes(32) ?
	println('KEY: $key')

	// this data is one block (16 bytes) big
	mut data := 'THIS IS THE DATA'.bytes()

	println('generating cipher')
	cipher := aes.new_cipher(key)

	println('performing encryption')
	mut encrypted := []byte{len: aes.block_size}
	cipher.encrypt(mut encrypted, data)
	println(encrypted)

	println('performing decryption')
	mut decrypted := []byte{len: aes.block_size}
	cipher.decrypt(mut decrypted, encrypted)
	println(decrypted)

	assert decrypted == data
}