1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/examples/sokol/03_march_tracing_glsl/rt_glsl.v
2021-04-19 19:01:47 +03:00

442 lines
12 KiB
V

/**********************************************************************
*
* Sokol 3d cube demo
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* HOW TO COMPILE SHADERS:
* - download the sokol shader convertor tool from https://github.com/floooh/sokol-tools-bin
*
* - compile the .glsl shader with:
* linux : sokol-shdc --input rt_glsl.glsl --output rt_glsl.h --slang glsl330
* windows: sokol-shdc.exe --input rt_glsl.glsl --output rt_glsl.h --slang glsl330
*
* --slang parameter can be:
* - glsl330: desktop GL
* - glsl100: GLES2 / WebGL
* - glsl300es: GLES3 / WebGL2
* - hlsl4: D3D11
* - hlsl5: D3D11
* - metal_macos: Metal on macOS
* - metal_ios: Metal on iOS device
* - metal_sim: Metal on iOS simulator
* - wgpu: WebGPU
*
* you can have multiple platforms at the same time passing parameters like this: --slang glsl330:hlsl5:metal_macos
* for further infos have a look at the sokol shader tool docs.
*
* TODO:
* - frame counter
**********************************************************************/
import gg
import gg.m4
import gx
// import math
import sokol.sapp
import sokol.gfx
import sokol.sgl
import time
// GLSL Include and functions
#flag -I @VMODROOT/.
#include "rt_glsl.h" #Please use sokol-shdc to generate the necessary rt_glsl.h file from rt_glsl.glsl (see the instructions at the top of this file)
fn C.rt_shader_desc(gfx.Backend) &C.sg_shader_desc
const (
win_width = 800
win_height = 800
bg_color = gx.white
)
struct App {
mut:
gg &gg.Context
texture C.sg_image
init_flag bool
frame_count int
mouse_x int = -1
mouse_y int = -1
// glsl
cube_pip_glsl C.sg_pipeline
cube_bind C.sg_bindings
// time
ticks i64
}
/******************************************************************************
* Texture functions
******************************************************************************/
fn create_texture(w int, h int, buf &byte) C.sg_image {
sz := w * h * 4
mut img_desc := C.sg_image_desc{
width: w
height: h
num_mipmaps: 0
min_filter: .linear
mag_filter: .linear
// usage: .dynamic
wrap_u: .clamp_to_edge
wrap_v: .clamp_to_edge
label: &byte(0)
d3d11_texture: 0
}
// comment if .dynamic is enabled
img_desc.data.subimage[0][0] = C.sg_range{
ptr: buf
size: size_t(sz)
}
sg_img := C.sg_make_image(&img_desc)
return sg_img
}
fn destroy_texture(sg_img C.sg_image) {
C.sg_destroy_image(sg_img)
}
// Use only if usage: .dynamic is enabled
fn update_text_texture(sg_img C.sg_image, w int, h int, buf &byte) {
sz := w * h * 4
mut tmp_sbc := C.sg_image_data{}
tmp_sbc.subimage[0][0] = C.sg_range{
ptr: buf
size: size_t(sz)
}
C.sg_update_image(sg_img, &tmp_sbc)
}
/******************************************************************************
* Draw functions
******************************************************************************
Cube vertex buffer with packed vertex formats for color and texture coords.
Note that a vertex format which must be portable across all
backends must only use the normalized integer formats
(BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted
to floating point formats in the vertex shader inputs.
The reason is that D3D11 cannot convert from non-normalized
formats to floating point inputs (only to integer inputs),
and WebGL2 / GLES2 don't support integer vertex shader inputs.
*/
struct Vertex_t {
x f32
y f32
z f32
color u32
u f32
v f32
// u u16 // for compatibility with D3D11
// v u16 // for compatibility with D3D11
}
fn init_cube_glsl(mut app App) {
// cube vertex buffer
// d := u16(32767) // for compatibility with D3D11, 32767 stand for 1
d := f32(1.0)
c := u32(0xFFFFFF_FF) // color RGBA8
vertices := [
// Face 0
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{ 1.0, -1.0, -1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, -1.0, c, d, d},
Vertex_t{-1.0, 1.0, -1.0, c, 0, d},
// Face 1
Vertex_t{-1.0, -1.0, 1.0, c, 0, 0},
Vertex_t{ 1.0, -1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{-1.0, 1.0, 1.0, c, 0, d},
// Face 2
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, 1.0, -1.0, c, d, 0},
Vertex_t{-1.0, 1.0, 1.0, c, d, d},
Vertex_t{-1.0, -1.0, 1.0, c, 0, d},
// Face 3
Vertex_t{ 1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{ 1.0, 1.0, -1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{ 1.0, -1.0, 1.0, c, 0, d},
// Face 4
Vertex_t{-1.0, -1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, -1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, -1.0, 1.0, c, d, d},
Vertex_t{ 1.0, -1.0, -1.0, c, 0, d},
// Face 5
Vertex_t{-1.0, 1.0, -1.0, c, 0, 0},
Vertex_t{-1.0, 1.0, 1.0, c, d, 0},
Vertex_t{ 1.0, 1.0, 1.0, c, d, d},
Vertex_t{ 1.0, 1.0, -1.0, c, 0, d},
]
mut vert_buffer_desc := C.sg_buffer_desc{}
unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) }
vert_buffer_desc.size = size_t(vertices.len * int(sizeof(Vertex_t)))
vert_buffer_desc.data = C.sg_range{
ptr: vertices.data
size: size_t(vertices.len * int(sizeof(Vertex_t)))
}
vert_buffer_desc.@type = .vertexbuffer
vert_buffer_desc.label = 'cube-vertices'.str
vbuf := gfx.make_buffer(&vert_buffer_desc)
// create an index buffer for the cube
indices := [
u16(0), 1, 2, 0, 2, 3,
6, 5, 4, 7, 6, 4,
8, 9, 10, 8, 10, 11,
14, 13, 12, 15, 14, 12,
16, 17, 18, 16, 18, 19,
22, 21, 20, 23, 22, 20,
]
mut index_buffer_desc := C.sg_buffer_desc{}
unsafe {C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc))}
index_buffer_desc.size = size_t(indices.len * int(sizeof(u16)))
index_buffer_desc.data = C.sg_range{
ptr: indices.data
size: size_t(indices.len * int(sizeof(u16)))
}
index_buffer_desc.@type = .indexbuffer
index_buffer_desc.label = "cube-indices".str
ibuf := gfx.make_buffer(&index_buffer_desc)
// create shader
shader := gfx.make_shader(C.rt_shader_desc(C.sg_query_backend()))
mut pipdesc := C.sg_pipeline_desc{}
unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) }
pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t))
// the constants [C.ATTR_vs_pos, C.ATTR_vs_color0, C.ATTR_vs_texcoord0] are generated by sokol-shdc
pipdesc.layout.attrs[C.ATTR_vs_pos ].format = .float3 // x,y,z as f32
pipdesc.layout.attrs[C.ATTR_vs_color0 ].format = .ubyte4n // color as u32
pipdesc.layout.attrs[C.ATTR_vs_texcoord0].format = .float2 // u,v as f32
// pipdesc.layout.attrs[C.ATTR_vs_texcoord0].format = .short2n // u,v as u16
pipdesc.shader = shader
pipdesc.index_type = .uint16
pipdesc.depth = C.sg_depth_state{
write_enabled: true
compare: gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL)
}
pipdesc.cull_mode = .back
pipdesc.label = 'glsl_shader pipeline'.str
app.cube_bind.vertex_buffers[0] = vbuf
app.cube_bind.index_buffer = ibuf
app.cube_bind.fs_images[C.SLOT_tex] = app.texture
app.cube_pip_glsl = gfx.make_pipeline(&pipdesc)
println('GLSL init DONE!')
}
[inline]
fn vec4(x f32, y f32, z f32, w f32) m4.Vec4 {
return m4.Vec4{e:[x, y, z, w]!}
}
fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4 {
proj := m4.perspective(60, w/h, 0.01, 10.0)
view := m4.look_at(vec4(f32(0.0) ,0 , 6, 0), vec4(f32(0), 0, 0, 0), vec4(f32(0), 1, 0, 0))
view_proj := view * proj
rxm := m4.rotate(m4.rad(rx), vec4(f32(1), 0, 0, 0))
rym := m4.rotate(m4.rad(ry), vec4(f32(0), 1, 0, 0))
model := rym * rxm
scale_m := m4.scale(vec4(in_scale, in_scale, in_scale, 1))
res := (scale_m * model) * view_proj
return res
}
fn draw_cube_glsl(app App) {
if app.init_flag == false {
return
}
ws := gg.window_size_real_pixels()
ratio := f32(ws.width) / ws.height
dw := f32(ws.width / 2)
dh := f32(ws.height / 2)
// use the following commented lines to rotate the 3d glsl cube
// rot := [f32(app.mouse_y), f32(app.mouse_x)]
// calc_tr_matrices(dw, dh, rot[0], rot[1] ,2.3)
tr_matrix := calc_tr_matrices(dw, dh, 0, 0, 2.3)
gfx.apply_viewport(0, 0, ws.width, ws.height, true)
// apply the pipline and bindings
gfx.apply_pipeline(app.cube_pip_glsl)
gfx.apply_bindings(app.cube_bind)
// Uniforms
// *** vertex shadeer uniforms ***
// passing the view matrix as uniform
// res is a 4x4 matrix of f32 thus: 4*16 byte of size
vs_uniforms_range := C.sg_range{
ptr: &tr_matrix
size: size_t(4 * 16)
}
gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params, &vs_uniforms_range)
// *** fragment shader uniforms ***
time_ticks := f32(time.ticks() - app.ticks) / 1000
mut tmp_fs_params := [
f32(ws.width),
ws.height * ratio, // x,y resolution to pass to FS
app.mouse_x, // mouse x
ws.height - app.mouse_y * 2, // mouse y scaled
time_ticks, // time as f32
app.frame_count, // frame count
0,
0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h
]!
fs_uniforms_range := C.sg_range{
ptr: &tmp_fs_params
size: size_t(sizeof(tmp_fs_params))
}
gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params, &fs_uniforms_range)
// 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw
gfx.draw(0, (3 * 2) * 6, 1)
gfx.end_pass()
gfx.commit()
}
fn frame(mut app App) {
ws := gg.window_size_real_pixels()
// clear
mut color_action := C.sg_color_attachment_action{
action: gfx.Action(C.SG_ACTION_CLEAR)
value: C.sg_color{
r: 0.0
g: 0.0
b: 0.0
a: 1.0
}
}
mut pass_action := C.sg_pass_action{}
pass_action.colors[0] = color_action
gfx.begin_default_pass(&pass_action, ws.width, ws.height)
// glsl cube
draw_cube_glsl(app)
app.frame_count++
}
/******************************************************************************
* Init / Cleanup
******************************************************************************/
fn my_init(mut app App) {
// set max vertices,
// for a large number of the same type of object it is better use the instances!!
desc := sapp.create_desc()
gfx.setup(&desc)
sgl_desc := C.sgl_desc_t{
max_vertices: 50 * 65536
}
sgl.setup(&sgl_desc)
// create chessboard texture 256*256 RGBA
w := 256
h := 256
sz := w * h * 4
tmp_txt := unsafe { malloc(sz) }
mut i := 0
for i < sz {
unsafe {
y := (i >> 0x8) >> 5 // 8 cell
x := (i & 0xFF) >> 5 // 8 cell
// upper left corner
if x == 0 && y == 0 {
tmp_txt[i + 0] = byte(0xFF)
tmp_txt[i + 1] = byte(0)
tmp_txt[i + 2] = byte(0)
tmp_txt[i + 3] = byte(0xFF)
}
// low right corner
else if x == 7 && y == 7 {
tmp_txt[i + 0] = byte(0)
tmp_txt[i + 1] = byte(0xFF)
tmp_txt[i + 2] = byte(0)
tmp_txt[i + 3] = byte(0xFF)
} else {
col := if ((x + y) & 1) == 1 { 0xFF } else { 128 }
tmp_txt[i + 0] = byte(col) // red
tmp_txt[i + 1] = byte(col) // green
tmp_txt[i + 2] = byte(col) // blue
tmp_txt[i + 3] = byte(0xFF) // alpha
}
i += 4
}
}
unsafe {
app.texture = create_texture(w, h, tmp_txt)
free(tmp_txt)
}
// glsl
init_cube_glsl(mut app)
app.init_flag = true
}
fn cleanup(mut app App) {
gfx.shutdown()
}
/******************************************************************************
* events handling
******************************************************************************/
fn my_event_manager(mut ev gg.Event, mut app App) {
if ev.typ == .mouse_move {
app.mouse_x = int(ev.mouse_x)
app.mouse_y = int(ev.mouse_y)
}
if ev.typ == .touches_began || ev.typ == .touches_moved {
if ev.num_touches > 0 {
touch_point := ev.touches[0]
app.mouse_x = int(touch_point.pos_x)
app.mouse_y = int(touch_point.pos_y)
}
}
}
/******************************************************************************
* Main
******************************************************************************/
[console] // is needed for easier diagnostics on windows
fn main() {
// App init
mut app := &App{
gg: 0
}
app.gg = gg.new_context(
width: win_width
height: win_height
use_ortho: true // This is needed for 2D drawing
create_window: true
window_title: '3D Ray Marching Cube'
user_data: app
bg_color: bg_color
frame_fn: frame
init_fn: my_init
cleanup_fn: cleanup
event_fn: my_event_manager
)
app.ticks = time.ticks()
app.gg.run()
}