1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/compiler/table.v
2019-09-15 03:49:57 +03:00

910 lines
20 KiB
V

// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module main
import math
import strings
struct Table {
mut:
typesmap map[string]Type
consts []Var
fns map[string]Fn
generic_fns []GenTable //map[string]GenTable // generic_fns['listen_and_serve'] == ['Blog', 'Forum']
obf_ids map[string]int // obf_ids['myfunction'] == 23
modules []string // List of all modules registered by the application
imports []string // List of all imports
file_imports []FileImportTable // List of imports for file
cflags []CFlag // ['-framework Cocoa', '-lglfw3']
fn_cnt int //atomic
obfuscate bool
}
struct GenTable {
fn_name string
mut:
types []string
}
// Holds import information scoped to the parsed file
struct FileImportTable {
mut:
module_name string
file_path string
imports map[string]string
}
enum AccessMod {
private // private immutable
private_mut // private mutable
public // public immutable (readonly)
public_mut // public, but mutable only in this module
public_mut_mut // public and mutable both inside and outside (not recommended to use, that's why it's so verbose)
}
enum TypeCategory {
builtin
struct_
func // 2
interface_
enum_
union_ // 5
c_struct
c_typedef
array
}
struct Var {
mut:
typ string
name string
is_arg bool
is_const bool
args []Var // function args
attr string // [json] etc
is_mut bool
is_alloc bool
is_returned bool
ptr bool
ref bool
parent_fn string // Variables can only be defined in functions
mod string // module where this var is stored
line_nr int
access_mod AccessMod
is_global bool // __global (translated from C only)
is_used bool
is_changed bool
scope_level int
is_c bool // todo remove once `typ` is `Type`, not string
}
struct Type {
mut:
mod string
name string
cat TypeCategory
fields []Var
methods []Fn
parent string
func Fn // For cat == FN (type myfn fn())
is_c bool // `C.FILE`
enum_vals []string
gen_types []string
// This field is used for types that are not defined yet but are known to exist.
// It allows having things like `fn (f Foo) bar()` before `Foo` is defined.
// This information is needed in the first pass.
is_placeholder bool
gen_str bool // needs `.str()` method generation
}
struct TypeNode {
mut:
next &TypeNode
typ Type
}
// For debugging types
fn (t Type) str() string {
mut s := 'type "$t.name" {'
if t.fields.len > 0 {
// s += '\n $t.fields.len fields:\n'
for field in t.fields {
s += '\n $field.name $field.typ'
}
s += '\n'
}
if t.methods.len > 0 {
// s += '\n $t.methods.len methods:\n'
for method in t.methods {
s += '\n ${method.str()}'
}
s += '\n'
}
s += '}\n'
return s
}
const (
CReserved = [
'delete',
'exit',
'unix',
//'print',
// 'ok',
'error',
'malloc',
'calloc',
'free',
'panic',
// Full list of C reserved words, from: https://en.cppreference.com/w/c/keyword
'auto',
'char',
'default',
'do',
'double',
'extern',
'float',
'inline',
'int',
'long',
'register',
'restrict',
'short',
'signed',
'sizeof',
'static',
'switch',
'typedef',
'union',
'unsigned',
'void',
'volatile',
'while',
]
)
// This is used in generated C code
fn (f Fn) str() string {
t := Table{}
str_args := f.str_args(t)
return '$f.name($str_args) $f.typ'
}
fn (t &Table) debug_fns() string {
mut s := strings.new_builder(1000)
for _, f in t.fns {
s.writeln(f.name)
}
return s.str()
}
// fn (types array_Type) print_to_file(f string) {
// }
const (
number_types = ['number', 'int', 'i8', 'i16', 'u16', 'u32', 'byte', 'i64', 'u64', 'f32', 'f64']
float_types = ['f32', 'f64']
)
fn is_number_type(typ string) bool {
return typ in number_types
}
fn is_float_type(typ string) bool {
return typ in float_types
}
fn is_primitive_type(typ string) bool {
return is_number_type(typ) || typ == 'string'
}
fn new_table(obfuscate bool) &Table {
mut t := &Table {
obfuscate: obfuscate
}
t.register_type('int')
t.register_type('size_t')
t.register_type_with_parent('i8', 'int')
t.register_type_with_parent('byte', 'int')
t.register_type_with_parent('i16', 'int')
t.register_type_with_parent('u16', 'u32')
t.register_type_with_parent('u32', 'int')
t.register_type_with_parent('i64', 'int')
t.register_type_with_parent('u64', 'u32')
t.register_type('byteptr')
t.register_type('intptr')
t.register_type('f32')
t.register_type('f64')
t.register_type('rune')
t.register_type('bool')
t.register_type('void')
t.register_type('voidptr')
t.register_type('T')
t.register_type('va_list')
t.register_const('stdin', 'int', 'main')
t.register_const('stdout', 'int', 'main')
t.register_const('stderr', 'int', 'main')
t.register_const('errno', 'int', 'main')
t.register_type_with_parent('map_string', 'map')
t.register_type_with_parent('map_int', 'map')
return t
}
// If `name` is a reserved C keyword, returns `v_name` instead.
fn (t mut Table) var_cgen_name(name string) string {
if name in CReserved {
return 'v_$name'
}
else {
return name
}
}
fn (t mut Table) register_module(mod string) {
if mod in t.modules {
return
}
t.modules << mod
}
fn (p mut Parser) register_array(typ string) {
if typ.contains('*') {
println('bad arr $typ')
return
}
if !p.table.known_type(typ) {
p.register_type_with_parent(typ, 'array')
p.cgen.typedefs << 'typedef array $typ;'
}
}
fn (p mut Parser) register_map(typ string) {
if typ.contains('*') {
println('bad map $typ')
return
}
if !p.table.known_type(typ) {
p.register_type_with_parent(typ, 'map')
p.cgen.typedefs << 'typedef map $typ;'
}
}
fn (table &Table) known_mod(mod string) bool {
return mod in table.modules
}
fn (t mut Table) register_const(name, typ, mod string) {
t.consts << Var {
name: name
typ: typ
is_const: true
mod: mod
}
}
// Only for translated code
fn (p mut Parser) register_global(name, typ string) {
p.table.consts << Var {
name: name
typ: typ
is_const: true
is_global: true
mod: p.mod
is_mut: true
}
}
fn (t mut Table) register_fn(new_fn Fn) {
t.fns[new_fn.name] = new_fn
}
fn (table &Table) known_type(typ_ string) bool {
mut typ := typ_
// 'byte*' => look up 'byte', but don't mess up fns
if typ.ends_with('*') && !typ.contains(' ') {
typ = typ.left(typ.len - 1)
}
t := table.typesmap[typ]
return t.name.len > 0 && !t.is_placeholder
}
fn (table &Table) known_type_fast(t &Type) bool {
return t.name.len > 0 && !t.is_placeholder
}
fn (t &Table) find_fn(name string) Fn {
f := t.fns[name]
if !isnil(f.name.str) {
return f
}
return Fn{}
}
fn (t &Table) known_fn(name string) bool {
f := t.find_fn(name)
return f.name != ''
}
fn (t &Table) known_const(name string) bool {
v := t.find_const(name)
// TODO use optional
return v.name.len > 0
}
fn (t mut Table) register_type(typ string) {
if typ.len == 0 {
return
}
if typ in t.typesmap {
return
}
t.typesmap[typ] = Type{name:typ}
}
fn (p mut Parser) register_type_with_parent(strtyp, parent string) {
typ := Type {
name: strtyp
parent: parent
mod: p.mod
}
p.table.register_type2(typ)
}
fn (t mut Table) register_type_with_parent(typ, parent string) {
if typ.len == 0 {
return
}
t.typesmap[typ] = Type {
name: typ
parent: parent
//mod: mod
}
}
fn (t mut Table) register_type2(typ Type) {
if typ.name.len == 0 {
return
}
t.typesmap[typ.name] = typ
}
fn (t mut Table) rewrite_type(typ Type) {
if typ.name.len == 0 {
return
}
t.typesmap[typ.name] = typ
}
fn (table mut Table) add_field(type_name, field_name, field_type string, is_mut bool, attr string, access_mod AccessMod) {
if type_name == '' {
print_backtrace()
cerror('add_field: empty type')
}
mut t := table.typesmap[type_name]
t.fields << Var {
name: field_name
typ: field_type
is_mut: is_mut
attr: attr
parent_fn: type_name // Name of the parent type
access_mod: access_mod
}
table.typesmap[type_name] = t
}
fn (t &Type) has_field(name string) bool {
field := t.find_field(name)
return (field.name != '')
}
fn (t &Type) has_enum_val(name string) bool {
return name in t.enum_vals
}
fn (t &Type) find_field(name string) Var {
for field in t.fields {
if field.name == name {
return field
}
}
return Var{}
}
fn (table &Table) type_has_field(typ &Type, name string) bool {
field := table.find_field(typ, name)
return (field.name != '')
}
fn (table &Table) find_field(typ &Type, name string) Var {
field := typ.find_field(name)
if field.name.len == 0 && typ.parent.len > 0 {
parent := table.find_type(typ.parent)
return parent.find_field(name)
}
return field
}
fn (table mut Table) add_method(type_name string, f Fn) {
if type_name == '' {
print_backtrace()
cerror('add_method: empty type')
}
// TODO table.typesmap[type_name].methods << f
mut t := table.typesmap[type_name]
t.methods << f
table.typesmap[type_name] = t
}
fn (t &Type) has_method(name string) bool {
method := t.find_method(name)
return (method.name != '')
}
fn (table &Table) type_has_method(typ &Type, name string) bool {
method := table.find_method(typ, name)
return (method.name != '')
}
// TODO use `?Fn`
fn (table &Table) find_method(typ &Type, name string) Fn {
// method := typ.find_method(name)
t := table.typesmap[typ.name]
method := t.find_method(name)
if method.name.len == 0 && typ.parent.len > 0 {
parent := table.find_type(typ.parent)
return parent.find_method(name)
// println('parent = $parent.name $res')
// return res
}
return method
}
fn (t &Type) find_method(name string) Fn {
// println('$t.name find_method($name) methods.len=$t.methods.len')
for method in t.methods {
// println('method=$method.name')
if method.name == name {
return method
}
}
return Fn{}
}
/*
// TODO
fn (t mutt Type) add_gen_type(type_name string) {
// println('add_gen_type($s)')
if t.gen_types.contains(type_name) {
return
}
t.gen_types << type_name
}
*/
fn (p &Parser) find_type(name string) Type {
typ := p.table.find_type(name)
if typ.name == '' {
return p.table.find_type(p.prepend_mod(name))
}
return typ
}
fn (t &Table) find_type(name_ string) Type {
mut name := name_
if name.ends_with('*') && !name.contains(' ') {
name = name.left(name.len - 1)
}
if !(name in t.typesmap) {
return Type{}
}
return t.typesmap[name]
}
fn (p mut Parser) _check_types(got_, expected_ string, throw bool) bool {
mut got := got_
mut expected := expected_
p.log('check types got="$got" exp="$expected" ')
if p.pref.translated {
return true
}
// Allow ints to be used as floats
if got == 'int' && expected == 'f32' {
return true
}
if got == 'int' && expected == 'f64' {
return true
}
if got == 'f64' && expected == 'f32' {
return true
}
if got == 'f32' && expected == 'f64' {
return true
}
// Allow ints to be used as longs
if got=='int' && expected=='i64' {
return true
}
if got == 'void*' && expected.starts_with('fn ') {
return true
}
if got.starts_with('[') && expected == 'byte*' {
return true
}
// Todo void* allows everything right now
if got=='void*' || expected=='void*' {// || got == 'cvoid' || expected == 'cvoid' {
return true
}
// TODO only allow numeric consts to be assigned to bytes, and
// throw an error if they are bigger than 255
if got=='int' && expected=='byte' {
return true
}
if got=='byteptr' && expected=='byte*' {
return true
}
if got=='byte*' && expected=='byteptr' {
return true
}
if got=='int' && expected=='byte*' {
return true
}
//if got=='int' && expected=='voidptr*' {
//return true
//}
// byteptr += int
if got=='int' && expected=='byteptr' {
return true
}
if got == 'Option' && expected.starts_with('Option_') {
return true
}
// lines := new_array
if got == 'array' && expected.starts_with('array_') {
return true
}
// Expected type "Option_os__File", got "os__File"
if expected.starts_with('Option_') && expected.ends_with(got) {
return true
}
// NsColor* return 0
if expected.ends_with('*') && got == 'int' {
return true
}
// if got == 'T' || got.contains('<T>') {
// return true
// }
// if expected == 'T' || expected.contains('<T>') {
// return true
// }
// Allow pointer arithmetic
if expected=='void*' && got=='int' {
return true
}
expected = expected.replace('*', '')
got = got.replace('*', '')
if got != expected {
// Interface check
if expected.ends_with('er') {
if p.satisfies_interface(expected, got, throw) {
return true
}
}
if !throw {
return false
}
else {
p.error('expected type `$expected`, but got `$got`')
}
}
return true
}
// throw by default
fn (p mut Parser) check_types(got, expected string) bool {
if p.first_pass() { return true }
return p._check_types(got, expected, true)
}
fn (p mut Parser) check_types_no_throw(got, expected string) bool {
return p._check_types(got, expected, false)
}
fn (p mut Parser) satisfies_interface(interface_name, _typ string, throw bool) bool {
int_typ := p.table.find_type(interface_name)
typ := p.table.find_type(_typ)
for method in int_typ.methods {
if !typ.has_method(method.name) {
// if throw {
p.error('Type "$_typ" doesn\'t satisfy interface "$interface_name" (method "$method.name" is not implemented)')
// }
return false
}
}
return true
}
fn (table &Table) is_interface(name string) bool {
if !(name in table.typesmap) {
return false
}
t := table.typesmap[name]
return t.cat == .interface_
}
// Do we have fn main()?
fn (t &Table) main_exists() bool {
for _, f in t.fns {
if f.name == 'main' {
return true
}
}
return false
}
// TODO use `?Var`
fn (t &Table) find_const(name string) Var {
//println('find const l=$t.consts.len')
for c in t.consts {
if c.name == name {
return c
}
}
return Var{}
}
// ('s', 'string') => 'string s'
// ('nums', '[20]byte') => 'byte nums[20]'
// ('myfn', 'fn(int) string') => 'string (*myfn)(int)'
fn (table &Table) cgen_name_type_pair(name, typ string) string {
// Special case for [10]int
if typ.len > 0 && typ[0] == `[` {
tmp := typ.all_after(']')
size := typ.all_before(']')
return '$tmp $name $size ]'
}
// fn()
else if typ.starts_with('fn (') {
T := table.find_type(typ)
if T.name == '' {
println('this should never happen')
exit(1)
}
str_args := T.func.str_args(table)
return '$T.func.typ (*$name)( $str_args /*FFF*/ )'
}
// TODO tm hack, do this for all C struct args
else if typ == 'tm' {
return 'struct /*TM*/ tm $name'
}
return '$typ $name'
}
fn is_valid_int_const(val, typ string) bool {
x := val.int()
switch typ {
case 'byte': return 0 <= x && x <= math.MaxU8
case 'u16': return 0 <= x && x <= math.MaxU16
//case 'u32': return 0 <= x && x <= math.MaxU32
//case 'u64': return 0 <= x && x <= math.MaxU64
//////////////
case 'i8': return math.MinI8 <= x && x <= math.MaxI8
case 'i16': return math.MinI16 <= x && x <= math.MaxI16
case 'int': return math.MinI32 <= x && x <= math.MaxI32
//case 'i64':
//x64 := val.i64()
//return i64(-(1<<63)) <= x64 && x64 <= i64((1<<63)-1)
}
return true
}
fn (t mut Table) register_generic_fn(fn_name string) {
t.generic_fns << GenTable{fn_name, []string}
}
fn (t mut Table) fn_gen_types(fn_name string) []string {
for _, f in t.generic_fns {
if f.fn_name == fn_name {
return f.types
}
}
cerror('function $fn_name not found')
return []string
}
// `foo<Bar>()`
// fn_name == 'foo'
// typ == 'Bar'
fn (t mut Table) register_generic_fn_type(fn_name, typ string) {
for i, f in t.generic_fns {
if f.fn_name == fn_name {
t.generic_fns[i].types << typ
return
}
}
}
fn (p mut Parser) typ_to_fmt(typ string, level int) string {
t := p.table.find_type(typ)
if t.cat == .enum_ {
return '%d'
}
switch typ {
case 'string': return '%.*s'
//case 'bool': return '%.*s'
case 'ustring': return '%.*s'
case 'byte', 'bool', 'int', 'char', 'byte', 'i16', 'i8': return '%d'
case 'u16', 'u32': return '%u'
case 'f64', 'f32': return '%f'
case 'i64': return '%lld'
case 'u64': return '%llu'
case 'byte*', 'byteptr': return '%s'
// case 'array_string': return '%s'
// case 'array_int': return '%s'
case 'void': p.error('cannot interpolate this value')
default:
if typ.ends_with('*') {
return '%p'
}
}
if t.parent != '' && level == 0 {
return p.typ_to_fmt(t.parent, level+1)
}
return ''
}
fn is_compile_time_const(s_ string) bool {
s := s_.trim_space()
if s == '' {
return false
}
if s.contains('\'') {
return true
}
for c in s {
if ! ((c >= `0` && c <= `9`) || c == `.`) {
return false
}
}
return true
}
// Once we have a module format we can read from module file instead
// this is not optimal
fn (table &Table) qualify_module(mod string, file_path string) string {
for m in table.imports {
if m.contains('.') && m.contains(mod) {
m_parts := m.split('.')
m_path := m_parts.join('/')
if mod == m_parts[m_parts.len-1] && file_path.contains(m_path) {
return m
}
}
}
return mod
}
fn new_file_import_table(file_path string) &FileImportTable {
return &FileImportTable{
file_path: file_path
imports: map[string]string
}
}
fn (fit &FileImportTable) known_import(mod string) bool {
return mod in fit.imports || fit.is_aliased(mod)
}
fn (fit mut FileImportTable) register_import(mod string) {
fit.register_alias(mod, mod)
}
fn (fit mut FileImportTable) register_alias(alias string, mod string) {
if alias in fit.imports {
cerror('cannot import $mod as $alias: import name $alias already in use in "${fit.file_path}".')
}
if mod.contains('.internal.') {
mod_parts := mod.split('.')
mut internal_mod_parts := []string
for part in mod_parts {
if part == 'internal' { break }
internal_mod_parts << part
}
internal_parent := internal_mod_parts.join('.')
if !fit.module_name.starts_with(internal_parent) {
cerror('module $mod can only be imported internally by libs.')
}
}
fit.imports[alias] = mod
}
fn (fit &FileImportTable) known_alias(alias string) bool {
return alias in fit.imports
}
fn (fit &FileImportTable) is_aliased(mod string) bool {
for _, val in fit.imports {
if val == mod {
return true
}
}
return false
}
fn (fit &FileImportTable) resolve_alias(alias string) string {
return fit.imports[alias]
}
fn (t &Type) contains_field_type(typ string) bool {
if !t.name[0].is_capital() {
return false
}
for field in t.fields {
if field.typ == typ {
return true
}
}
return false
}
// check for a function / variable / module typo in `name`
fn (table &Table) identify_typo(name string, current_fn &Fn, fit &FileImportTable) string {
// dont check if so short
if name.len < 2 { return '' }
min_match := 0.8 // for dice coefficient between 0.0 - 1.0
name_orig := name.replace('__', '.').replace('_dot_', '.')
mut output := ''
// check functions
mut n := table.find_misspelled_fn(name_orig, min_match)
if n != '' {
output += '\n * function: `$n`'
}
// check function local variables
n = current_fn.find_misspelled_local_var(name_orig, min_match)
if n != '' {
output += '\n * variable: `$n`'
}
// check imported modules
n = table.find_misspelled_imported_mod(name_orig, fit, min_match)
if n != '' {
output += '\n * module: `$n`'
}
return output
}
// find function with closest name to `name`
fn (table &Table) find_misspelled_fn(name string, min_match f32) string {
mut closest := f32(0)
mut closest_fn := ''
for _, f in table.fns {
n := '${f.mod}.$f.name'
if !name.starts_with(f.mod) || (n.len - name.len > 3 || name.len - n.len > 3) { continue }
p := strings.dice_coefficient(name, n)
if p > closest {
closest = p
closest_fn = n
}
}
return if closest >= min_match { closest_fn } else { '' }
}
// find imported module with closest name to `name`
fn (table &Table) find_misspelled_imported_mod(name string, fit &FileImportTable, min_match f32) string {
mut closest := f32(0)
mut closest_mod := ''
for alias, mod in fit.imports {
n := '${fit.module_name}.$alias'
if !name.starts_with(fit.module_name) || (n.len - name.len > 3 || name.len - n.len > 3) { continue }
p := strings.dice_coefficient(name, n)
if p > closest {
closest = p
closest_mod = '$alias ($mod)'
}
}
return if closest >= min_match { closest_mod } else { '' }
}