1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/thirdparty/libatomic_ops/atomic_ops/sysdeps/generic_pthread.h
2022-08-14 13:16:52 +03:00

443 lines
11 KiB
C

/*
* Copyright (c) 2003 by Hewlett-Packard Company. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* The following is useful primarily for debugging and documentation. */
/* We define various atomic operations by acquiring a global pthread */
/* lock. The resulting implementation will perform poorly, but should */
/* be correct unless it is used from signal handlers. */
/* We assume that all pthread operations act like full memory barriers. */
/* (We believe that is the intent of the specification.) */
#include <pthread.h>
#include "test_and_set_t_is_ao_t.h"
/* This is not necessarily compatible with the native */
/* implementation. But those can't be safely mixed anyway. */
#ifdef __cplusplus
extern "C" {
#endif
/* We define only the full barrier variants, and count on the */
/* generalization section below to fill in the rest. */
extern pthread_mutex_t AO_pt_lock;
#ifdef __cplusplus
} /* extern "C" */
#endif
AO_INLINE void
AO_nop_full(void)
{
pthread_mutex_lock(&AO_pt_lock);
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_nop_full
AO_INLINE AO_t
AO_load_full(const volatile AO_t *addr)
{
AO_t result;
pthread_mutex_lock(&AO_pt_lock);
result = *addr;
pthread_mutex_unlock(&AO_pt_lock);
return result;
}
#define AO_HAVE_load_full
AO_INLINE void
AO_store_full(volatile AO_t *addr, AO_t val)
{
pthread_mutex_lock(&AO_pt_lock);
*addr = val;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_store_full
AO_INLINE unsigned char
AO_char_load_full(const volatile unsigned char *addr)
{
unsigned char result;
pthread_mutex_lock(&AO_pt_lock);
result = *addr;
pthread_mutex_unlock(&AO_pt_lock);
return result;
}
#define AO_HAVE_char_load_full
AO_INLINE void
AO_char_store_full(volatile unsigned char *addr, unsigned char val)
{
pthread_mutex_lock(&AO_pt_lock);
*addr = val;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_store_full
AO_INLINE unsigned short
AO_short_load_full(const volatile unsigned short *addr)
{
unsigned short result;
pthread_mutex_lock(&AO_pt_lock);
result = *addr;
pthread_mutex_unlock(&AO_pt_lock);
return result;
}
#define AO_HAVE_short_load_full
AO_INLINE void
AO_short_store_full(volatile unsigned short *addr, unsigned short val)
{
pthread_mutex_lock(&AO_pt_lock);
*addr = val;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_store_full
AO_INLINE unsigned int
AO_int_load_full(const volatile unsigned int *addr)
{
unsigned int result;
pthread_mutex_lock(&AO_pt_lock);
result = *addr;
pthread_mutex_unlock(&AO_pt_lock);
return result;
}
#define AO_HAVE_int_load_full
AO_INLINE void
AO_int_store_full(volatile unsigned int *addr, unsigned int val)
{
pthread_mutex_lock(&AO_pt_lock);
*addr = val;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_store_full
AO_INLINE AO_TS_VAL_t
AO_test_and_set_full(volatile AO_TS_t *addr)
{
AO_TS_VAL_t result;
pthread_mutex_lock(&AO_pt_lock);
result = (AO_TS_VAL_t)(*addr);
*addr = AO_TS_SET;
pthread_mutex_unlock(&AO_pt_lock);
assert(result == AO_TS_SET || result == AO_TS_CLEAR);
return result;
}
#define AO_HAVE_test_and_set_full
AO_INLINE AO_t
AO_fetch_and_add_full(volatile AO_t *p, AO_t incr)
{
AO_t old_val;
pthread_mutex_lock(&AO_pt_lock);
old_val = *p;
*p = old_val + incr;
pthread_mutex_unlock(&AO_pt_lock);
return old_val;
}
#define AO_HAVE_fetch_and_add_full
AO_INLINE unsigned char
AO_char_fetch_and_add_full(volatile unsigned char *p, unsigned char incr)
{
unsigned char old_val;
pthread_mutex_lock(&AO_pt_lock);
old_val = *p;
*p = old_val + incr;
pthread_mutex_unlock(&AO_pt_lock);
return old_val;
}
#define AO_HAVE_char_fetch_and_add_full
AO_INLINE unsigned short
AO_short_fetch_and_add_full(volatile unsigned short *p, unsigned short incr)
{
unsigned short old_val;
pthread_mutex_lock(&AO_pt_lock);
old_val = *p;
*p = old_val + incr;
pthread_mutex_unlock(&AO_pt_lock);
return old_val;
}
#define AO_HAVE_short_fetch_and_add_full
AO_INLINE unsigned int
AO_int_fetch_and_add_full(volatile unsigned int *p, unsigned int incr)
{
unsigned int old_val;
pthread_mutex_lock(&AO_pt_lock);
old_val = *p;
*p = old_val + incr;
pthread_mutex_unlock(&AO_pt_lock);
return old_val;
}
#define AO_HAVE_int_fetch_and_add_full
AO_INLINE void
AO_and_full(volatile AO_t *p, AO_t value)
{
pthread_mutex_lock(&AO_pt_lock);
*p &= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_and_full
AO_INLINE void
AO_or_full(volatile AO_t *p, AO_t value)
{
pthread_mutex_lock(&AO_pt_lock);
*p |= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_or_full
AO_INLINE void
AO_xor_full(volatile AO_t *p, AO_t value)
{
pthread_mutex_lock(&AO_pt_lock);
*p ^= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_xor_full
AO_INLINE void
AO_char_and_full(volatile unsigned char *p, unsigned char value)
{
pthread_mutex_lock(&AO_pt_lock);
*p &= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_and_full
AO_INLINE void
AO_char_or_full(volatile unsigned char *p, unsigned char value)
{
pthread_mutex_lock(&AO_pt_lock);
*p |= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_or_full
AO_INLINE void
AO_char_xor_full(volatile unsigned char *p, unsigned char value)
{
pthread_mutex_lock(&AO_pt_lock);
*p ^= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_char_xor_full
AO_INLINE void
AO_short_and_full(volatile unsigned short *p, unsigned short value)
{
pthread_mutex_lock(&AO_pt_lock);
*p &= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_and_full
AO_INLINE void
AO_short_or_full(volatile unsigned short *p, unsigned short value)
{
pthread_mutex_lock(&AO_pt_lock);
*p |= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_or_full
AO_INLINE void
AO_short_xor_full(volatile unsigned short *p, unsigned short value)
{
pthread_mutex_lock(&AO_pt_lock);
*p ^= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_short_xor_full
AO_INLINE void
AO_int_and_full(volatile unsigned *p, unsigned value)
{
pthread_mutex_lock(&AO_pt_lock);
*p &= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_and_full
AO_INLINE void
AO_int_or_full(volatile unsigned *p, unsigned value)
{
pthread_mutex_lock(&AO_pt_lock);
*p |= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_or_full
AO_INLINE void
AO_int_xor_full(volatile unsigned *p, unsigned value)
{
pthread_mutex_lock(&AO_pt_lock);
*p ^= value;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_int_xor_full
AO_INLINE AO_t
AO_fetch_compare_and_swap_full(volatile AO_t *addr, AO_t old_val,
AO_t new_val)
{
AO_t fetched_val;
pthread_mutex_lock(&AO_pt_lock);
fetched_val = *addr;
if (fetched_val == old_val)
*addr = new_val;
pthread_mutex_unlock(&AO_pt_lock);
return fetched_val;
}
#define AO_HAVE_fetch_compare_and_swap_full
AO_INLINE unsigned char
AO_char_fetch_compare_and_swap_full(volatile unsigned char *addr,
unsigned char old_val,
unsigned char new_val)
{
unsigned char fetched_val;
pthread_mutex_lock(&AO_pt_lock);
fetched_val = *addr;
if (fetched_val == old_val)
*addr = new_val;
pthread_mutex_unlock(&AO_pt_lock);
return fetched_val;
}
#define AO_HAVE_char_fetch_compare_and_swap_full
AO_INLINE unsigned short
AO_short_fetch_compare_and_swap_full(volatile unsigned short *addr,
unsigned short old_val,
unsigned short new_val)
{
unsigned short fetched_val;
pthread_mutex_lock(&AO_pt_lock);
fetched_val = *addr;
if (fetched_val == old_val)
*addr = new_val;
pthread_mutex_unlock(&AO_pt_lock);
return fetched_val;
}
#define AO_HAVE_short_fetch_compare_and_swap_full
AO_INLINE unsigned
AO_int_fetch_compare_and_swap_full(volatile unsigned *addr, unsigned old_val,
unsigned new_val)
{
unsigned fetched_val;
pthread_mutex_lock(&AO_pt_lock);
fetched_val = *addr;
if (fetched_val == old_val)
*addr = new_val;
pthread_mutex_unlock(&AO_pt_lock);
return fetched_val;
}
#define AO_HAVE_int_fetch_compare_and_swap_full
/* Unlike real architectures, we define both double-width CAS variants. */
typedef struct {
AO_t AO_val1;
AO_t AO_val2;
} AO_double_t;
#define AO_HAVE_double_t
#define AO_DOUBLE_T_INITIALIZER { (AO_t)0, (AO_t)0 }
AO_INLINE AO_double_t
AO_double_load_full(const volatile AO_double_t *addr)
{
AO_double_t result;
pthread_mutex_lock(&AO_pt_lock);
result.AO_val1 = addr->AO_val1;
result.AO_val2 = addr->AO_val2;
pthread_mutex_unlock(&AO_pt_lock);
return result;
}
#define AO_HAVE_double_load_full
AO_INLINE void
AO_double_store_full(volatile AO_double_t *addr, AO_double_t value)
{
pthread_mutex_lock(&AO_pt_lock);
addr->AO_val1 = value.AO_val1;
addr->AO_val2 = value.AO_val2;
pthread_mutex_unlock(&AO_pt_lock);
}
#define AO_HAVE_double_store_full
AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old1, AO_t old2,
AO_t new1, AO_t new2)
{
pthread_mutex_lock(&AO_pt_lock);
if (addr -> AO_val1 == old1 && addr -> AO_val2 == old2)
{
addr -> AO_val1 = new1;
addr -> AO_val2 = new2;
pthread_mutex_unlock(&AO_pt_lock);
return 1;
}
else
pthread_mutex_unlock(&AO_pt_lock);
return 0;
}
#define AO_HAVE_compare_double_and_swap_double_full
AO_INLINE int
AO_compare_and_swap_double_full(volatile AO_double_t *addr,
AO_t old1, AO_t new1, AO_t new2)
{
pthread_mutex_lock(&AO_pt_lock);
if (addr -> AO_val1 == old1)
{
addr -> AO_val1 = new1;
addr -> AO_val2 = new2;
pthread_mutex_unlock(&AO_pt_lock);
return 1;
}
else
pthread_mutex_unlock(&AO_pt_lock);
return 0;
}
#define AO_HAVE_compare_and_swap_double_full
/* We can't use hardware loads and stores, since they don't */
/* interact correctly with atomic updates. */