1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/examples/flappylearning/game.v

251 lines
5.2 KiB
V

module main
import gg
import gx
import os
import time
import math
import rand
import neuroevolution
const (
win_width = 500
win_height = 512
timer_period = 24 // ms
)
struct Bird {
mut:
x f64 = 80
y f64 = 250
width f64 = 40
height f64 = 30
alive bool = true
gravity f64
velocity f64 = 0.3
jump f64 = -6
}
fn (mut b Bird) flap() {
b.gravity = b.jump
}
fn (mut b Bird) update() {
b.gravity += b.velocity
b.y += b.gravity
}
fn (b Bird) is_dead(height f64, pipes []Pipe) bool {
if b.y >= height || b.y + b.height <= 0 {
return true
}
for pipe in pipes {
if !(b.x > pipe.x + pipe.width ||
b.x + b.width < pipe.x || b.y > pipe.y + pipe.height || b.y + b.height < pipe.y) {
return true
}
}
return false
}
struct Pipe {
mut:
x f64 = 80
y f64 = 250
width f64 = 40
height f64 = 30
speed f64 = 3
}
fn (mut p Pipe) update() {
p.x -= p.speed
}
fn (p Pipe) is_out() bool {
return p.x + p.width < 0
}
struct App {
mut:
gg &gg.Context
background gg.Image
bird gg.Image
pipetop gg.Image
pipebottom gg.Image
pipes []Pipe
birds []Bird
score int
max_score int
width f64 = win_width
height f64 = win_height
spawn_interval f64 = 90
interval f64
nv neuroevolution.Generations
gen []neuroevolution.Network
alives int
generation int
background_speed f64 = 0.5
background_x f64
}
fn (mut app App) start() {
app.interval = 0
app.score = 0
app.pipes = []
app.birds = []
app.gen = app.nv.generate()
for _ in 0 .. app.gen.len {
app.birds << Bird{}
}
app.generation++
app.alives = app.birds.len
}
fn (app &App) is_it_end() bool {
for i in 0 .. app.birds.len {
if app.birds[i].alive {
return false
}
}
return true
}
fn (mut app App) update() {
app.background_x += app.background_speed
mut next_holl := f64(0)
if app.birds.len > 0 {
for i := 0; i < app.pipes.len; i += 2 {
if app.pipes[i].x + app.pipes[i].width > app.birds[0].x {
next_holl = app.pipes[i].height / app.height
break
}
}
}
for j, mut bird in app.birds {
if bird.alive {
inputs := [
bird.y / app.height,
next_holl,
]
res := app.gen[j].compute(inputs)
if res[0] > 0.5 {
bird.flap()
}
bird.update()
if bird.is_dead(app.height, app.pipes) {
bird.alive = false
app.alives--
app.nv.network_score(app.gen[j], app.score)
if app.is_it_end() {
app.start()
}
}
}
}
for k := 0; k < app.pipes.len; k++ {
app.pipes[k].update()
if app.pipes[k].is_out() {
app.pipes.delete(k)
k--
}
}
if app.interval == 0 {
delta_bord := f64(50)
pipe_holl := f64(120)
holl_position := math.round(rand.f64() *
(app.height - delta_bord * 2.0 - pipe_holl)) + delta_bord
app.pipes << Pipe{
x: app.width
y: 0
height: holl_position
}
app.pipes << Pipe{
x: app.width
y: holl_position + pipe_holl
height: app.height
}
}
app.interval++
if app.interval == app.spawn_interval {
app.interval = 0
}
app.score++
app.max_score = if app.score > app.max_score { app.score } else { app.max_score }
}
fn main() {
mut app := &App{
gg: 0
}
app.gg = gg.new_context(
bg_color: gx.white
width: win_width
height: win_height
use_ortho: true // This is needed for 2D drawing
create_window: true
window_title: 'flappylearning-v'
frame_fn: frame
user_data: app
init_fn: init_images
font_path: os.resource_abs_path('../assets/fonts/RobotoMono-Regular.ttf')
)
app.nv = neuroevolution.Generations{
population: 50
network: [2, 2, 1]
}
app.start()
go app.run()
app.gg.run()
}
fn (mut app App) run() {
for {
app.update()
time.sleep_ms(timer_period)
}
}
fn init_images(mut app App) {
app.background = app.gg.create_image(os.resource_abs_path('./img/background.png'))
app.bird = app.gg.create_image(os.resource_abs_path('./img/bird.png'))
app.pipetop = app.gg.create_image(os.resource_abs_path('./img/pipetop.png'))
app.pipebottom = app.gg.create_image(os.resource_abs_path('./img/pipebottom.png'))
}
fn frame(app &App) {
app.gg.begin()
app.draw()
app.gg.end()
}
fn (app &App) display() {
for i := 0; i < int(math.ceil(app.width / app.background.width) + 1.0); i++ {
background_x := i * app.background.width - math.floor(int(app.background_x) % int(app.background.width))
app.gg.draw_image(f32(background_x), 0, app.background.width, app.background.height,
app.background)
}
for i, pipe in app.pipes {
if i % 2 == 0 {
app.gg.draw_image(f32(pipe.x), f32(pipe.y + pipe.height - app.pipetop.height),
app.pipetop.width, app.pipetop.height, app.pipetop)
} else {
app.gg.draw_image(f32(pipe.x), f32(pipe.y), app.pipebottom.width, app.pipebottom.height,
app.pipebottom)
}
}
for bird in app.birds {
if bird.alive {
app.gg.draw_image(f32(bird.x), f32(bird.y), app.bird.width, app.bird.height,
app.bird)
}
}
app.gg.draw_text_def(10, 25, 'Score: $app.score')
app.gg.draw_text_def(10, 50, 'Max Score: $app.max_score')
app.gg.draw_text_def(10, 75, 'Generation: $app.generation')
app.gg.draw_text_def(10, 100, 'Alive: $app.alives / $app.nv.population')
}
fn (app &App) draw() {
app.display()
}