mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
e1a6453302
It was causing problems with cross compiling for Linux, and it should be a separate module anyway, just like in Go and Python.
221 lines
4.8 KiB
Go
221 lines
4.8 KiB
Go
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
|
|
module cmath
|
|
|
|
import math
|
|
|
|
struct Complex {
|
|
re f64
|
|
im f64
|
|
}
|
|
|
|
pub fn complex(re f64, im f64) Complex {
|
|
return Complex{re, im}
|
|
}
|
|
|
|
// To String method
|
|
pub fn (c Complex) str() string {
|
|
mut out := '$c.re'
|
|
out += if c.im >= 0 {
|
|
'+$c.im'
|
|
}
|
|
else {
|
|
'$c.im'
|
|
}
|
|
out += 'i'
|
|
return out
|
|
}
|
|
|
|
// Complex Modulus value
|
|
// mod() and abs() return the same
|
|
pub fn (c Complex) abs() f64 {
|
|
return C.hypot(c.re, c.im)
|
|
}
|
|
pub fn (c Complex) mod() f64 {
|
|
return c.abs()
|
|
}
|
|
|
|
|
|
// Complex Angle
|
|
pub fn (c Complex) angle() f64 {
|
|
return math.atan2(c.im, c.re)
|
|
}
|
|
|
|
// Complex Addition c1 + c2
|
|
pub fn (c1 Complex) + (c2 Complex) Complex {
|
|
return Complex{c1.re + c2.re, c1.im + c2.im}
|
|
}
|
|
|
|
// Complex Substraction c1 - c2
|
|
pub fn (c1 Complex) - (c2 Complex) Complex {
|
|
return Complex{c1.re - c2.re, c1.im - c2.im}
|
|
}
|
|
|
|
// Complex Multiplication c1 * c2
|
|
// Currently Not Supported
|
|
// pub fn (c1 Complex) * (c2 Complex) Complex {
|
|
// return Complex{
|
|
// (c1.re * c2.re) + ((c1.im * c2.im) * -1),
|
|
// (c1.re * c2.im) + (c1.im * c2.re)
|
|
// }
|
|
// }
|
|
|
|
// Complex Division c1 / c2
|
|
// Currently Not Supported
|
|
// pub fn (c1 Complex) / (c2 Complex) Complex {
|
|
// denom := (c2.re * c2.re) + (c2.im * c2.im)
|
|
// return Complex {
|
|
// ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom,
|
|
// ((c1.re * -c2.im) + (c1.im * c2.re))/denom
|
|
// }
|
|
// }
|
|
|
|
// Complex Addition c1.add(c2)
|
|
pub fn (c1 Complex) add(c2 Complex) Complex {
|
|
return c1 + c2
|
|
}
|
|
|
|
// Complex Subtraction c1.subtract(c2)
|
|
pub fn (c1 Complex) subtract(c2 Complex) Complex {
|
|
return c1 - c2
|
|
}
|
|
|
|
// Complex Multiplication c1.multiply(c2)
|
|
pub fn (c1 Complex) multiply(c2 Complex) Complex {
|
|
return Complex{
|
|
(c1.re * c2.re) + ((c1.im * c2.im) * -1),
|
|
(c1.re * c2.im) + (c1.im * c2.re)
|
|
}
|
|
}
|
|
|
|
// Complex Division c1.divide(c2)
|
|
pub fn (c1 Complex) divide(c2 Complex) Complex {
|
|
denom := (c2.re * c2.re) + (c2.im * c2.im)
|
|
return Complex {
|
|
((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom,
|
|
((c1.re * -c2.im) + (c1.im * c2.re)) / denom
|
|
}
|
|
}
|
|
|
|
// Complex Conjugate
|
|
pub fn (c Complex) conjugate() Complex{
|
|
return Complex{c.re, -c.im}
|
|
}
|
|
|
|
// Complex Additive Inverse
|
|
// Based on
|
|
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
|
pub fn (c Complex) addinv() Complex {
|
|
return Complex{-c.re, -c.im}
|
|
}
|
|
|
|
// Complex Multiplicative Inverse
|
|
// Based on
|
|
// http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx
|
|
pub fn (c Complex) mulinv() Complex {
|
|
return Complex {
|
|
c.re / (c.re * c.re + c.im * c.im),
|
|
-c.im / (c.re * c.re + c.im * c.im)
|
|
}
|
|
}
|
|
|
|
// Complex Power
|
|
// Based on
|
|
// https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review
|
|
pub fn (c Complex) pow(n f64) Complex {
|
|
r := math.pow(c.abs(), n)
|
|
angle := c.angle()
|
|
return Complex {
|
|
r * math.cos(n * angle),
|
|
r * math.sin(n * angle)
|
|
}
|
|
}
|
|
|
|
// Complex nth root
|
|
pub fn (c Complex) root(n f64) Complex {
|
|
return c.pow(1.0 / n)
|
|
}
|
|
|
|
// Complex Exponential
|
|
// Using Euler's Identity
|
|
// Based on
|
|
// https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf
|
|
pub fn (c Complex) exp() Complex {
|
|
a := math.exp(c.re)
|
|
return Complex {
|
|
a * math.cos(c.im),
|
|
a * math.sin(c.im)
|
|
}
|
|
}
|
|
|
|
// Complex Natural Logarithm
|
|
// Based on
|
|
// http://www.chemistrylearning.com/logarithm-of-complex-number/
|
|
pub fn (c Complex) ln() Complex {
|
|
return Complex {
|
|
math.log(c.abs()),
|
|
c.angle()
|
|
}
|
|
}
|
|
|
|
// Complex Sin
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) sin() Complex {
|
|
return Complex{
|
|
math.sin(c.re) * math.cosh(c.im),
|
|
math.cos(c.re) * math.sinh(c.im)
|
|
}
|
|
}
|
|
|
|
// Complex Cosine
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) cos() Complex {
|
|
return Complex{
|
|
math.cos(c.re) * math.cosh(c.im),
|
|
-(math.sin(c.re) * math.sinh(c.im))
|
|
}
|
|
}
|
|
|
|
// Complex Tangent
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) tan() Complex {
|
|
return c.sin().divide(c.cos())
|
|
}
|
|
|
|
// Complex Hyperbolic Sin
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) sinh() Complex {
|
|
return Complex{
|
|
math.cos(c.im) * math.sinh(c.re),
|
|
math.sin(c.im) * math.cosh(c.re)
|
|
}
|
|
}
|
|
|
|
// Complex Hyperbolic Cosine
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) cosh() Complex {
|
|
return Complex{
|
|
math.cos(c.im) * math.cosh(c.re),
|
|
math.sin(c.im) * math.sinh(c.re)
|
|
}
|
|
}
|
|
|
|
// Complex Hyperbolic Tangent
|
|
// Based on
|
|
// http://www.milefoot.com/math/complex/functionsofi.htm
|
|
pub fn (c Complex) tanh() Complex {
|
|
return c.sinh().divide(c.cosh())
|
|
}
|
|
|
|
// Complex Equals
|
|
pub fn (c1 Complex) equals(c2 Complex) bool {
|
|
return (c1.re == c2.re) && (c1.im == c2.im)
|
|
}
|