1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/v/gen/cgen.v
2020-03-20 17:11:58 +01:00

1726 lines
40 KiB
V

module gen
import (
strings
v.ast
v.table
v.depgraph
term
)
struct Gen {
out strings.Builder
typedefs strings.Builder
definitions strings.Builder // typedefs, defines etc (everything that goes to the top of the file)
table &table.Table
mut:
fn_decl &ast.FnDecl // pointer to the FnDecl we are currently inside otherwise 0
tmp_count int
varaidic_args map[string]int
is_c_call bool // e.g. `C.printf("v")`
is_assign_expr bool // inside left part of assign expr (for array_set(), etc)
is_array_set bool
is_amp bool // for `&Foo{}` to merge PrefixExpr `&` and StructInit `Foo{}`; also for `&byte(0)` etc
optionals []string // to avoid duplicates TODO perf, use map
inside_ternary bool // ?: comma separated statements on a single line
stmt_start_pos int
right_is_opt bool
}
pub fn cgen(files []ast.File, table &table.Table) string {
println('start cgen2')
mut g := Gen{
out: strings.new_builder(100)
typedefs: strings.new_builder(100)
definitions: strings.new_builder(100)
table: table
fn_decl: 0
}
g.init()
for file in files {
g.stmts(file.stmts)
}
g.write_variadic_types()
return g.typedefs.str() + g.definitions.str() + g.out.str()
}
pub fn (g mut Gen) init() {
g.definitions.writeln('// Generated by the V compiler')
g.definitions.writeln('#include <inttypes.h>') // int64_t etc
g.definitions.writeln(c_builtin_types)
g.definitions.writeln(c_headers)
g.write_builtin_types()
g.write_typedef_types()
g.write_sorted_types()
g.write_multi_return_types()
g.definitions.writeln('// end of definitions #endif')
}
// V type to C type
pub fn (g mut Gen) typ(t table.Type) string {
nr_muls := table.type_nr_muls(t)
sym := g.table.get_type_symbol(t)
mut styp := sym.name.replace_each(['.', '__'])
if nr_muls > 0 {
styp += strings.repeat(`*`, nr_muls)
}
if styp.starts_with('C__') {
styp = styp[3..]
}
if styp in ['stat', 'dirent*', 'tm', 'tm*', 'winsize'] {
// TODO perf and other C structs
styp = 'struct $styp'
}
if table.type_is_optional(t) {
styp = 'Option_' + styp
if !(styp in g.optionals) {
g.definitions.writeln('typedef Option $styp;')
g.optionals << styp
}
}
return styp
}
/*
pub fn (g &Gen) styp(t string) string {
return t.replace_each(['.', '__'])
}
*/
//
pub fn (g mut Gen) write_typedef_types() {
for typ in g.table.types {
match typ.kind {
.alias {
parent := &g.table.types[typ.parent_idx]
styp := typ.name.replace('.', '__')
parent_styp := parent.name.replace('.', '__')
g.definitions.writeln('typedef $parent_styp $styp;')
}
.array {
styp := typ.name.replace('.', '__')
g.definitions.writeln('typedef array $styp;')
}
.array_fixed {
styp := typ.name.replace('.', '__')
// array_fixed_char_300 => char x[300]
mut fixed := styp[12..]
len := styp.after('_')
fixed = fixed[..fixed.len - len.len - 1]
g.definitions.writeln('typedef $fixed $styp [$len];')
}
.map {
styp := typ.name.replace('.', '__')
g.definitions.writeln('typedef map $styp;')
}
.function {
info := typ.info as table.FnType
func := info.func
if !info.has_decl && !info.is_anon {
fn_name := func.name.replace('.', '__')
g.definitions.write('typedef ${g.typ(func.return_type)} (*$fn_name)(')
for i, arg in func.args {
g.definitions.write(g.typ(arg.typ))
if i < func.args.len - 1 {
g.definitions.write(',')
}
}
g.definitions.writeln(');')
}
}
else {
continue
}
}
}
}
pub fn (g mut Gen) write_multi_return_types() {
g.definitions.writeln('// multi return structs')
for typ in g.table.types {
// sym := g.table.get_type_symbol(typ)
if typ.kind != .multi_return {
continue
}
name := typ.name.replace('.', '__')
info := typ.info as table.MultiReturn
g.definitions.writeln('typedef struct {')
// TODO copy pasta StructDecl
// for field in struct_info.fields {
for i, mr_typ in info.types {
type_name := g.typ(mr_typ)
g.definitions.writeln('\t$type_name arg${i};')
}
g.definitions.writeln('} $name;\n')
// g.typedefs.writeln('typedef struct $name $name;')
}
}
pub fn (g mut Gen) write_variadic_types() {
if g.varaidic_args.size > 0 {
g.definitions.writeln('// variadic structs')
}
for type_str, arg_len in g.varaidic_args {
typ := table.Type(type_str.int())
type_name := g.typ(typ)
struct_name := 'varg_' + type_name.replace('*', '_ptr')
g.definitions.writeln('struct $struct_name {')
g.definitions.writeln('\tint len;')
g.definitions.writeln('\t$type_name args[$arg_len];')
g.definitions.writeln('};\n')
g.typedefs.writeln('typedef struct $struct_name $struct_name;')
}
}
pub fn (g &Gen) save() {}
pub fn (g mut Gen) write(s string) {
g.out.write(s)
}
pub fn (g mut Gen) writeln(s string) {
g.out.writeln(s)
}
pub fn (g mut Gen) new_tmp_var() string {
g.tmp_count++
return 'tmp$g.tmp_count'
}
pub fn (g mut Gen) reset_tmp_count() {
g.tmp_count = 0
}
fn (g mut Gen) stmts(stmts []ast.Stmt) {
for stmt in stmts {
g.stmt(stmt)
if !g.inside_ternary {
g.writeln('')
}
}
}
fn (g mut Gen) stmt(node ast.Stmt) {
g.stmt_start_pos = g.out.len
// println('cgen.stmt()')
// g.writeln('//// stmt start')
match node {
ast.AssignStmt {
g.gen_assign_stmt(it)
}
ast.AssertStmt {
g.writeln('// assert')
// TODO
}
ast.Attr {
g.writeln('//[$it.name]')
}
ast.BranchStmt {
// continue or break
g.write(it.tok.kind.str())
g.writeln(';')
}
ast.ConstDecl {
g.const_decl(it)
}
ast.CompIf {
// TODO
g.writeln('//#ifdef ')
g.expr(it.cond)
g.stmts(it.stmts)
g.writeln('//#endif')
}
ast.DeferStmt {
g.writeln('// defer')
}
ast.EnumDecl {
g.writeln('//')
/*
name := it.name.replace('.', '__')
g.definitions.writeln('typedef enum {')
for i, val in it.vals {
g.definitions.writeln('\t${name}_$val, // $i')
}
g.definitions.writeln('} $name;')
*/
}
ast.ExprStmt {
g.expr(it.expr)
expr := it.expr
match expr {
// no ; after an if expression
ast.IfExpr {}
else {
if !g.inside_ternary {
g.writeln(';')
}
}
}
}
ast.FnDecl {
g.fn_decl = it // &it
g.gen_fn_decl(it)
}
ast.ForCStmt {
g.write('for (')
if !it.has_init {
g.write('; ')
}
else {
g.stmt(it.init)
}
g.expr(it.cond)
g.write('; ')
// g.stmt(it.inc)
g.expr(it.inc)
g.writeln(') {')
g.stmts(it.stmts)
g.writeln('}')
}
ast.ForInStmt {
if it.is_range {
i := g.new_tmp_var()
g.write('for (int $i = ')
g.expr(it.cond)
g.write('; $i < ')
g.expr(it.high)
g.writeln('; $i++) { ')
g.writeln('int $it.val_var = $i;')
g.stmts(it.stmts)
g.writeln('}')
}
// TODO:
else {}
}
ast.ForStmt {
g.write('while (')
if it.is_inf {
g.write('1')
}
else {
g.expr(it.cond)
}
g.writeln(') {')
g.stmts(it.stmts)
g.writeln('}')
}
ast.GlobalDecl {
styp := g.typ(it.typ)
g.definitions.writeln('$styp $it.name; // global')
}
ast.GotoLabel {
g.writeln('$it.name:')
}
ast.HashStmt {
// #include etc
typ := it.val.all_before(' ')
if typ in ['include', 'define'] {
g.definitions.writeln('#$it.val')
}
}
ast.Import {}
ast.Return {
g.return_statement(it)
}
ast.StructDecl {
name := it.name.replace('.', '__')
// g.writeln('typedef struct {')
// for field in it.fields {
// field_type_sym := g.table.get_type_symbol(field.typ)
// g.writeln('\t$field_type_sym.name $field.name;')
// }
// g.writeln('} $name;')
if !it.is_c {
g.typedefs.writeln('typedef struct $name $name;')
}
}
ast.TypeDecl {
g.writeln('// TypeDecl')
}
ast.UnsafeStmt {
g.stmts(it.stmts)
}
else {
verror('cgen.stmt(): unhandled node ' + typeof(node))
}
}
}
// use instead of expr() when you need to cast to sum type (can add other casts also)
fn (g mut Gen) expr_with_cast(expr ast.Expr, got_type table.Type, exp_type table.Type) {
// cast to sum type
if exp_type != table.void_type && exp_type != 0 && got_type != 0 {
exp_sym := g.table.get_type_symbol(exp_type)
if exp_sym.kind == .sum_type {
sum_info := exp_sym.info as table.SumType
if got_type in sum_info.variants {
got_styp := g.typ(got_type)
exp_styp := g.typ(exp_type)
got_idx := table.type_idx(got_type)
g.write('/* sum type cast */ ($exp_styp) {.obj = memdup(&(${got_styp}[]) {')
g.expr(expr)
g.write('}, sizeof($got_styp)), .typ = $got_idx}')
return
}
}
}
// no cast
g.expr(expr)
}
fn (g mut Gen) gen_assign_stmt(assign_stmt ast.AssignStmt) {
// multi return
// g.write('/*assign*/')
if assign_stmt.left.len > assign_stmt.right.len {
mut return_type := table.void_type
match assign_stmt.right[0] {
ast.CallExpr {
return_type = it.return_type
}
ast.MethodCallExpr {
return_type = it.return_type
}
else {
panic('expected call')
}
}
mr_var_name := 'mr_$assign_stmt.pos.pos'
if table.type_is_optional(return_type) {
return_type = table.type_clear_extra(return_type)
mr_styp := g.typ(return_type)
g.write('$mr_styp $mr_var_name = (*(${mr_styp}*)')
g.expr(assign_stmt.right[0])
g.write('.data)')
}
else {
mr_styp := g.typ(return_type)
g.write('$mr_styp $mr_var_name = ')
g.expr(assign_stmt.right[0])
}
g.writeln(';')
for i, ident in assign_stmt.left {
if ident.kind == .blank_ident {
continue
}
ident_var_info := ident.var_info()
styp := g.typ(ident_var_info.typ)
if assign_stmt.op == .decl_assign {
g.write('$styp ')
}
g.expr(ident)
g.writeln(' = ${mr_var_name}.arg$i;')
}
}
// `a := 1` | `a,b := 1,2`
else {
for i, ident in assign_stmt.left {
val := assign_stmt.right[i]
ident_var_info := ident.var_info()
styp := g.typ(ident_var_info.typ)
if ident.kind == .blank_ident {
if ast.expr_is_call(val) {
g.expr(val)
}
else {
g.write('{$styp _ = ')
g.expr(val)
g.writeln(';}')
}
}
else {
mut is_fixed_array_init := false
match val {
ast.ArrayInit {
is_fixed_array_init = g.table.get_type_symbol(it.typ).kind == .array_fixed
}
else {}
}
is_decl := assign_stmt.op == .decl_assign
if is_decl {
g.write('$styp ')
}
g.expr(ident)
if !is_fixed_array_init {
g.write(' = ')
if !is_decl {
g.expr_with_cast(val, assign_stmt.left_types[i], ident_var_info.typ)
}
else {
g.expr(val)
}
}
}
g.writeln(';')
}
}
}
fn (g mut Gen) gen_fn_decl(it ast.FnDecl) {
if it.is_c || it.name == 'malloc' || it.no_body {
return
}
g.reset_tmp_count()
is_main := it.name == 'main'
if is_main {
g.write('int ${it.name}(')
}
else {
mut name := it.name
if it.is_method {
name = g.table.get_type_symbol(it.receiver.typ).name + '_' + name
}
name = name.replace('.', '__')
if name.starts_with('_op_') {
name = op_to_fn_name(name)
}
if name == 'exit' {
name = 'v_exit'
}
// type_name := g.table.type_to_str(it.return_type)
type_name := g.typ(it.return_type)
g.write('$type_name ${name}(')
g.definitions.write('$type_name ${name}(')
}
// Receiver is the first argument
/*
if it.is_method {
mut styp := g.typ(it.receiver.typ)
// if table.type_nr_muls(it.receiver.typ) > 0 {
// if it.rec_mut {
// styp += '*'
// }
g.write('$styp $it.receiver.name ')
// TODO mut
g.definitions.write('$styp $it.receiver.name')
if it.args.len > 0 {
g.write(', ')
g.definitions.write(', ')
}
}
*/
//
g.fn_args(it.args, it.is_variadic)
g.writeln(') { ')
if !is_main {
g.definitions.writeln(');')
}
for stmt in it.stmts {
// g.write('\t')
g.stmt(stmt)
}
if is_main {
g.writeln('return 0;')
}
g.writeln('}')
g.fn_decl = 0
}
fn (g mut Gen) fn_args(args []table.Arg, is_variadic bool) {
no_names := args.len > 0 && args[0].name == 'arg_1'
for i, arg in args {
arg_type_sym := g.table.get_type_symbol(arg.typ)
mut arg_type_name := g.typ(arg.typ) // arg_type_sym.name.replace('.', '__')
is_varg := i == args.len - 1 && is_variadic
if is_varg {
g.varaidic_args[int(arg.typ).str()] = 0
arg_type_name = 'varg_' + g.typ(arg.typ).replace('*', '_ptr')
}
if arg_type_sym.kind == .function {
info := arg_type_sym.info as table.FnType
func := info.func
g.write('${g.typ(func.return_type)} (*$arg.name)(')
g.definitions.write('${g.typ(func.return_type)} (*$arg.name)(')
g.fn_args(func.args, func.is_variadic)
g.write(')')
g.definitions.write(')')
}
else if no_names {
g.write(arg_type_name)
g.definitions.write(arg_type_name)
}
else {
mut nr_muls := table.type_nr_muls(arg.typ)
s := arg_type_name + ' ' + arg.name
if arg.is_mut {
// mut arg needs one *
nr_muls = 1
}
// if nr_muls > 0 && !is_varg {
// s = arg_type_name + strings.repeat(`*`, nr_muls) + ' ' + arg.name
// }
g.write(s)
g.definitions.write(s)
}
if i < args.len - 1 {
g.write(', ')
g.definitions.write(', ')
}
}
}
fn (g mut Gen) expr(node ast.Expr) {
// println('cgen expr() line_nr=$node.pos.line_nr')
match node {
ast.ArrayInit {
type_sym := g.table.get_type_symbol(it.typ)
if type_sym.kind != .array_fixed {
elem_sym := g.table.get_type_symbol(it.elem_type)
elem_type_str := g.typ(it.elem_type)
g.write('new_array_from_c_array($it.exprs.len, $it.exprs.len, sizeof($elem_type_str), ')
g.writeln('($elem_type_str[]){\t')
for expr in it.exprs {
g.expr(expr)
g.write(', ')
}
g.write('\n})')
}
else {}
}
ast.AsCast {
styp := g.typ(it.typ)
expr_type_sym := g.table.get_type_symbol(it.expr_type)
if expr_type_sym.kind == .sum_type {
g.write('/* as */ *($styp*)')
g.expr(it.expr)
g.write('.obj')
}
}
ast.AssignExpr {
if ast.expr_is_blank_ident(it.left) {
if ast.expr_is_call(it.val) {
g.expr(it.val)
}
else {
g.write('{${g.typ(it.left_type)} _ = ')
g.expr(it.val)
g.writeln(';}')
}
}
else {
g.is_assign_expr = true
if table.type_is_optional(it.right_type) {
g.right_is_opt = true
}
mut str_add := false
if it.left_type == table.string_type_idx && it.op == .plus_assign {
// str += str2 => `str = string_add(str, str2)`
g.expr(it.left)
g.write(' = string_add(')
str_add = true
}
g.expr(it.left)
// arr[i] = val => `array_set(arr, i, val)`, not `array_get(arr, i) = val`
if !g.is_array_set && !str_add {
g.write(' $it.op.str() ')
}
else if str_add {
g.write(', ')
}
g.is_assign_expr = false
g.expr_with_cast(it.val, it.right_type, it.left_type)
if g.is_array_set {
g.write(' })')
g.is_array_set = false
}
else if str_add {
g.write(')')
}
g.right_is_opt = false
}
}
ast.Assoc {
g.assoc(it)
}
ast.BoolLiteral {
g.write(it.val.str())
}
ast.CallExpr {
mut name := it.name.replace('.', '__')
if name == 'exit' {
name = 'v_exit'
}
if it.is_c {
// Skip "C__"
g.is_c_call = true
name = name[3..]
}
g.write('${name}(')
if name == 'println' && it.args[0].typ != table.string_type_idx {
// `println(int_str(10))`
// sym := g.table.get_type_symbol(it.args[0].typ)
styp := g.typ(it.args[0].typ)
g.write('${styp}_str(')
g.expr(it.args[0].expr)
g.write('))')
}
else {
g.call_args(it.args)
g.write(')')
}
g.is_c_call = false
}
ast.CastExpr {
// g.write('/*cast*/')
if g.is_amp {
// &Foo(0) => ((Foo*)0)
g.out.go_back(1)
}
if it.typ == table.string_type_idx {
// `tos(str, len)`, `tos2(str)`
if it.has_arg {
g.write('tos(')
}
else {
g.write('tos2(')
}
g.expr(it.expr)
sym := g.table.get_type_symbol(it.expr_type)
if sym.kind == .array {
// if we are casting an array, we need to add `.data`
g.write('.data')
}
if it.has_arg {
// len argument
g.write(', ')
g.expr(it.arg)
}
g.write(')')
}
else {
// styp := g.table.type_to_str(it.typ)
styp := g.typ(it.typ)
// g.write('($styp)(')
g.write('(($styp)(')
// if g.is_amp {
// g.write('*')
// }
// g.write(')(')
g.expr(it.expr)
g.write('))')
}
}
ast.CharLiteral {
g.write("'$it.val'")
}
ast.EnumVal {
// g.write('/*EnumVal*/${it.mod}${it.enum_name}_$it.val')
styp := g.typ(it.typ)
g.write(styp)
g.write('_$it.val')
}
ast.FloatLiteral {
g.write(it.val)
}
ast.Ident {
g.ident(it)
}
ast.IfExpr {
g.if_expr(it)
}
ast.IfGuardExpr {
g.write('/* guard */')
}
ast.IndexExpr {
g.index_expr(it)
}
ast.InfixExpr {
g.infix_expr(it)
}
ast.IntegerLiteral {
g.write(it.val.int().str())
}
ast.MatchExpr {
g.match_expr(it)
}
ast.MapInit {
key_typ_sym := g.table.get_type_symbol(it.key_type)
value_typ_sym := g.table.get_type_symbol(it.value_type)
key_typ_str := key_typ_sym.name.replace('.', '__')
value_typ_str := value_typ_sym.name.replace('.', '__')
size := it.vals.len
if size > 0 {
g.write('new_map_init($size, sizeof($value_typ_str), (${key_typ_str}[$size]){')
for expr in it.keys {
g.expr(expr)
g.write(', ')
}
g.write('}, (${value_typ_str}[$size]){')
for expr in it.vals {
g.expr(expr)
g.write(', ')
}
g.write('})')
}
else {
g.write('new_map(1, sizeof($value_typ_str))')
}
}
ast.MethodCallExpr {
// TODO: there are still due to unchecked exprs (opt/some fn arg)
if it.expr_type == 0 {
verror('method receiver type is 0, this means there are some uchecked exprs')
}
typ_sym := g.table.get_type_symbol(it.receiver_type)
// rec_sym := g.table.get_type_symbol(it.receiver_type)
mut receiver_name := typ_sym.name
if typ_sym.kind == .array && it.name == 'filter' {
g.gen_filter(it)
return
}
if typ_sym.kind == .array && it.name in
// TODO performance, detect `array` method differently
['repeat', 'sort_with_compare', 'free', 'push_many', 'trim',
//
'first', 'last', 'clone'] {
// && rec_sym.name == 'array' {
// && rec_sym.name == 'array' && receiver_name.starts_with('array') {
// `array_byte_clone` => `array_clone`
receiver_name = 'array'
if it.name in ['last', 'first'] {
return_type_str := g.typ(it.return_type)
g.write('*($return_type_str*)')
}
}
name := '${receiver_name}_$it.name'.replace('.', '__')
// if it.receiver_type != 0 {
// g.write('/*${g.typ(it.receiver_type)}*/')
// g.write('/*expr_type=${g.typ(it.expr_type)} rec type=${g.typ(it.receiver_type)}*/')
// }
g.write('${name}(')
if table.type_is_ptr(it.receiver_type) && !table.type_is_ptr(it.expr_type) {
// The receiver is a reference, but the caller provided a value
// Add `&` automatically.
// TODO same logic in call_args()
g.write('&')
}
else if !table.type_is_ptr(it.receiver_type) && table.type_is_ptr(it.expr_type) {
g.write('/*rec*/*')
}
g.expr(it.expr)
if it.args.len > 0 {
g.write(', ')
}
// /////////
/*
if name.contains('subkeys') {
println('call_args $name $it.arg_types.len')
for t in it.arg_types {
sym := g.table.get_type_symbol(t)
print('$sym.name ')
}
println('')
}
*/
// ///////
g.call_args(it.args)
g.write(')')
}
ast.None {
g.write('opt_none()')
}
ast.ParExpr {
g.write('(')
g.expr(it.expr)
g.write(')')
}
ast.PostfixExpr {
g.expr(it.expr)
g.write(it.op.str())
}
ast.PrefixExpr {
if it.op == .amp {
g.is_amp = true
}
// g.write('/*pref*/')
g.write(it.op.str())
g.expr(it.right)
g.is_amp = false
}
/*
ast.UnaryExpr {
// probably not :D
if it.op in [.inc, .dec] {
g.expr(it.left)
g.write(it.op.str())
}
else {
g.write(it.op.str())
g.expr(it.left)
}
}
*/
ast.SizeOf {
styp := g.typ(it.typ)
g.write('sizeof($styp)')
}
ast.StringLiteral {
// In C calls we have to generate C strings
// `C.printf("hi")` => `printf("hi");`
escaped_val := it.val.replace_each(['"', '\\"',
'\r\n', '\\n',
'\n', '\\n'])
if g.is_c_call {
g.write('"$escaped_val"')
}
else {
g.write('tos3("$escaped_val")')
}
}
// `user := User{name: 'Bob'}`
ast.StructInit {
styp := g.typ(it.typ)
if g.is_amp {
g.out.go_back(1) // delete the & already generated in `prefix_expr()
g.write('($styp*)memdup(&($styp){')
}
else {
g.writeln('($styp){')
}
for i, field in it.fields {
g.write('\t.$field = ')
g.expr_with_cast(it.exprs[i], it.expr_types[i], it.expected_types[i])
g.writeln(', ')
}
if it.fields.len == 0 {
g.write('0')
}
g.write('}')
if g.is_amp {
g.write(', sizeof($styp))')
}
}
ast.SelectorExpr {
g.expr(it.expr)
// if table.type_nr_muls(it.expr_type) > 0 {
if table.type_is_ptr(it.expr_type) {
g.write('->')
}
else {
// g.write('. /*typ= $it.expr_type */') // ${g.typ(it.expr_type)} /')
g.write('.')
}
if it.expr_type == 0 {
verror('cgen: SelectorExpr typ=0 field=$it.field')
}
g.write(it.field)
}
ast.Type {
// match sum Type
// g.write('/* Type */')
g.write('_type_idx_')
g.write(g.typ(it.typ))
}
ast.TypeOf {
g.write('tos3("TYPEOF_TODO")')
}
else {
// #printf("node=%d\n", node.typ);
println(term.red('cgen.expr(): bad node ' + typeof(node)))
}
}
}
fn (g mut Gen) infix_expr(node ast.InfixExpr) {
// g.write('/*infix*/')
// if it.left_type == table.string_type_idx {
// g.write('/*$node.left_type str*/')
// }
// string + string, string == string etc
if node.left_type == table.string_type_idx && node.op != .key_in {
fn_name := match node.op {
.plus{
'string_add('
}
.eq{
'string_eq('
}
.ne{
'string_ne('
}
.lt{
'string_lt('
}
.le{
'string_le('
}
.gt{
'string_gt('
}
.ge{
'string_ge('
}
else {
'/*node error*/'}
}
g.write(fn_name)
g.expr(node.left)
g.write(', ')
g.expr(node.right)
g.write(')')
}
else if node.op == .key_in {
right_sym := g.table.get_type_symbol(node.right_type)
if right_sym.kind == .array {
match node.right {
ast.ArrayInit {
// `a in [1,2,3]` optimization => `a == 1 || a == 2 || a == 3`
// avoids an allocation
// g.write('/*in opt*/')
g.in_optimization(node.left, it)
return
}
else {}
}
styp := g.typ(node.left_type)
g.write('_IN($styp, ')
g.expr(node.left)
g.write(', ')
g.expr(node.right)
g.write(')')
}
else if right_sym.kind == .map {
g.write('_IN_MAP(')
g.expr(node.left)
g.write(', ')
g.expr(node.right)
g.write(')')
}
else if right_sym.kind == .string {
g.write('string_contains(')
g.expr(node.right)
g.write(', ')
g.expr(node.left)
g.write(')')
}
}
// arr << val
else if node.op == .left_shift && g.table.get_type_symbol(node.left_type).kind == .array {
tmp := g.new_tmp_var()
sym := g.table.get_type_symbol(node.left_type)
right_sym := g.table.get_type_symbol(node.right_type)
if right_sym.kind == .array {
// push an array => PUSH_MANY
g.write('_PUSH_MANY(&')
g.expr_with_cast(node.left, node.right_type, node.left_type)
g.write(', (')
g.expr(node.right)
styp := g.typ(node.left_type)
g.write('), $tmp, $styp)')
}
else {
// push a single element
info := sym.info as table.Array
elem_type_str := g.typ(info.elem_type)
// g.write('array_push(&')
g.write('_PUSH(&')
g.expr_with_cast(node.left, node.right_type, info.elem_type)
g.write(', (')
g.expr(node.right)
g.write('), $tmp, $elem_type_str)')
}
}
else {
// if node.op == .dot {
// println('!! dot')
// }
g.expr(node.left)
g.write(' $node.op.str() ')
g.expr(node.right)
}
}
fn (g mut Gen) match_expr(node ast.MatchExpr) {
// println('match expr typ=$it.expr_type')
// TODO
if node.cond_type == 0 {
g.writeln('// match 0')
return
}
is_expr := node.is_expr && node.return_type != table.void_type
if is_expr {
g.inside_ternary = true
// g.write('/* EM ret type=${g.typ(node.return_type)} expected_type=${g.typ(node.expected_type)} */')
}
type_sym := g.table.get_type_symbol(node.cond_type)
mut tmp := ''
if type_sym.kind != .void {
tmp = g.new_tmp_var()
}
// styp := g.typ(node.expr_type)
// g.write('$styp $tmp = ')
// g.expr(node.cond)
// g.writeln(';') // $it.blocks.len')
// mut sum_type_str = ''
for j, branch in node.branches {
if j == node.branches.len - 1 {
// last block is an `else{}`
if is_expr {
// TODO too many branches. maybe separate ?: matches
g.write(' : ')
}
else {
g.writeln('else {')
}
}
else {
if j > 0 {
if is_expr {
g.write(' : ')
}
else {
g.write('else ')
}
}
if is_expr {
g.write('(')
}
else {
g.write('if (')
}
for i, expr in branch.exprs {
if node.is_sum_type {
g.expr(node.cond)
g.write('.typ == ')
// g.write('${tmp}.typ == ')
// sum_type_str
}
else if type_sym.kind == .string {
g.write('string_eq(')
//
g.expr(node.cond)
g.write(', ')
// g.write('string_eq($tmp, ')
}
else {
g.expr(node.cond)
g.write(' == ')
// g.write('$tmp == ')
}
g.expr(expr)
if type_sym.kind == .string {
g.write(')')
}
if i < branch.exprs.len - 1 {
g.write(' || ')
}
}
if is_expr {
g.write(') ? ')
}
else {
g.writeln(') {')
}
}
// g.writeln('/* M sum_type=$node.is_sum_type is_expr=$node.is_expr exp_type=${g.typ(node.expected_type)}*/')
if node.is_sum_type && branch.exprs.len > 0 && !node.is_expr {
// The first node in expr is an ast.Type
// Use it to generate `it` variable.
first_expr := branch.exprs[0]
match first_expr {
ast.Type {
it_type := g.typ(it.typ)
// g.writeln('$it_type* it = ($it_type*)${tmp}.obj; // ST it')
g.write('$it_type* it = ($it_type*)')
g.expr(node.cond)
g.writeln('.obj; // ST it')
}
else {
verror('match sum type')
}
}
}
g.stmts(branch.stmts)
if !g.inside_ternary {
g.writeln('}')
}
}
g.inside_ternary = false
}
fn (g mut Gen) ident(node ast.Ident) {
name := node.name.replace('.', '__')
if name.starts_with('C__') {
g.write(name[3..])
}
else {
// TODO `is`
match node.info {
ast.IdentVar {
// x ?int
// `x = 10` => `x.data = 10` (g.right_is_opt == false)
// `x = new_opt()` => `x = new_opt()` (g.right_is_opt == true)
// `println(x)` => `println(*(int*)x.data)`
if it.is_optional && !(g.is_assign_expr && g.right_is_opt) {
g.write('/*opt*/')
styp := g.typ(it.typ)[7..] // Option_int => int TODO perf?
g.write('(*($styp*)${name}.data)')
return
}
}
else {}
}
g.write(name)
}
}
fn (g mut Gen) if_expr(node ast.IfExpr) {
// g.writeln('/* if is_expr=$node.is_expr */')
// If expression? Assign the value to a temp var.
// Previously ?: was used, but it's too unreliable.
type_sym := g.table.get_type_symbol(node.typ)
mut tmp := ''
if type_sym.kind != .void {
tmp = g.new_tmp_var()
// g.writeln('$ti.name $tmp;')
}
// one line ?:
// TODO clean this up once `is` is supported
// TODO: make sure only one stmt in each branch
if node.is_expr && node.branches.len >= 2 && node.has_else && type_sym.kind != .void {
g.inside_ternary = true
for i, branch in node.branches {
if i > 0 {
g.write(' : ')
}
if i < node.branches.len - 1 || !node.has_else {
g.expr(branch.cond)
g.write(' ? ')
}
g.stmts(branch.stmts)
}
g.inside_ternary = false
}
else {
guard_ok := g.new_tmp_var()
mut is_guard := false
for i, branch in node.branches {
if i == 0 {
match branch.cond {
ast.IfGuardExpr {
is_guard = true
g.writeln('bool $guard_ok;')
g.write('{ /* if guard */ ${g.typ(it.expr_type)} $it.var_name = ')
g.expr(it.expr)
g.writeln(';')
g.writeln('if (($guard_ok = ${it.var_name}.ok)) {')
}
else {
g.write('if (')
g.expr(branch.cond)
g.writeln(') {')
}
}
}
else if i < node.branches.len - 1 || !node.has_else {
g.writeln('} else if (')
g.expr(branch.cond)
g.write(') {')
}
else if i == node.branches.len - 1 && node.has_else {
if is_guard {
g.writeln('} if (!$guard_ok) { /* else */')
}
else {
g.writeln('} else {')
}
}
// Assign ret value
// if i == node.stmts.len - 1 && type_sym.kind != .void {}
// g.writeln('$tmp =')
g.stmts(branch.stmts)
}
if is_guard {
g.write('}')
}
g.writeln('}')
}
}
fn (g mut Gen) index_expr(node ast.IndexExpr) {
// TODO else doesn't work with sum types
mut is_range := false
match node.index {
ast.RangeExpr {
// TODO should never be 0
if node.container_type != 0 {
sym := g.table.get_type_symbol(node.container_type)
is_range = true
if sym.kind == .string {
g.write('string_substr(')
}
else if sym.kind == .array {
g.write('array_slice(')
}
}
g.expr(node.left)
g.write(', ')
if it.has_low {
g.expr(it.low)
}
else {
g.write('0')
}
g.write(', ')
if it.has_high {
g.expr(it.high)
}
else {
g.expr(node.left)
g.write('.len')
}
g.write(')')
return
}
else {}
}
if !is_range && node.container_type != 0 {
sym := g.table.get_type_symbol(node.container_type)
if table.type_is_variadic(node.container_type) {
g.expr(node.left)
g.write('.args')
g.write('[')
g.expr(node.index)
g.write(']')
}
else if sym.kind == .array {
info := sym.info as table.Array
elem_type_str := g.typ(info.elem_type)
// `vals[i].field = x` is an exception and requires `array_get`:
// `(*(Val*)array_get(vals, i)).field = x ;`
mut is_selector := false
match node.left {
ast.SelectorExpr {
is_selector = true
}
else {}
}
if g.is_assign_expr && !is_selector {
g.is_array_set = true
g.write('array_set(&')
g.expr(node.left)
g.write(', ')
g.expr(node.index)
g.write(', &($elem_type_str[]) { ')
}
else {
g.write('(*($elem_type_str*)array_get(')
g.expr(node.left)
g.write(', ')
g.expr(node.index)
g.write('))')
}
}
else if sym.kind == .map {
info := sym.info as table.Map
elem_type_str := g.typ(info.value_type)
if g.is_assign_expr {
g.is_array_set = true
g.write('map_set(&')
g.expr(node.left)
g.write(', ')
g.expr(node.index)
g.write(', &($elem_type_str[]) { ')
}
else {
g.write('(*($elem_type_str*)map_get2(')
g.expr(node.left)
g.write(', ')
g.expr(node.index)
g.write('))')
}
}
else if sym.kind == .string && !table.type_is_ptr(node.container_type) {
g.write('string_at(')
g.expr(node.left)
g.write(', ')
g.expr(node.index)
g.write(')')
}
else {
g.expr(node.left)
g.write('[')
g.expr(node.index)
g.write(']')
}
}
}
fn (g mut Gen) return_statement(it ast.Return) {
g.write('return')
if g.fn_decl.name == 'main' {
g.writeln(' 0;')
return
}
fn_return_is_optional := table.type_is_optional(g.fn_decl.return_type)
// multiple returns
if it.exprs.len > 1 {
g.write(' ')
typ_sym := g.table.get_type_symbol(g.fn_decl.return_type)
mr_info := typ_sym.info as table.MultiReturn
mut styp := g.typ(g.fn_decl.return_type)
if fn_return_is_optional {
styp = styp[7..] // remove 'Option_'
g.write('opt_ok(& ($styp []) { ')
}
g.write('($styp){')
for i, expr in it.exprs {
g.write('.arg$i=')
g.expr(expr)
if i < it.exprs.len - 1 {
g.write(',')
}
}
g.write('}')
if fn_return_is_optional {
g.writeln(' }, sizeof($styp));')
}
}
// normal return
else if it.exprs.len == 1 {
g.write(' ')
// `return opt_ok(expr)` for functions that expect an optional
if fn_return_is_optional && !table.type_is_optional(it.types[0]) {
mut is_none := false
mut is_error := false
expr0 := it.exprs[0]
match expr0 {
ast.None {
is_none = true
}
ast.CallExpr {
is_error = true // TODO check name 'error'
}
else {}
}
if !is_none && !is_error {
styp := g.typ(g.fn_decl.return_type)[7..] // remove 'Option_'
g.write('opt_ok(& ($styp []) { ')
g.expr(it.exprs[0])
g.writeln(' }, sizeof($styp));')
return
}
// g.write('/*OPTIONAL*/')
}
if !table.type_is_ptr(g.fn_decl.return_type) && table.type_is_ptr(it.types[0]) {
// Automatic Dereference
g.write('*')
}
g.expr_with_cast(it.exprs[0], it.types[0], g.fn_decl.return_type)
}
g.writeln(';')
}
fn (g mut Gen) const_decl(node ast.ConstDecl) {
for i, field in node.fields {
name := field.name.replace('.', '__')
expr := node.exprs[i]
match expr {
// Simple expressions should use a #define
// so that we don't pollute the binary with unnecessary global vars
// Do not do this when building a module, otherwise the consts
// will not be accessible.
ast.CharLiteral, ast.IntegerLiteral {
g.definitions.write('#define $name ')
// TODO hack. Cut the generated value and paste it into definitions.
g.write('//')
pos := g.out.len
g.expr(expr)
mut b := g.out.buf[pos..g.out.buf.len].clone()
b << `\0`
val := string(b)
// val += '\0'
// g.out.go_back(val.len)
// println('pos=$pos buf.len=$g.out.buf.len len=$g.out.len val.len=$val.len val="$val"\n')
g.writeln('')
g.definitions.writeln(val)
}
else {
styp := g.typ(field.typ)
g.definitions.writeln('$styp $name; // inited later') // = ')
// TODO
// g.expr(node.exprs[i])
}
}
}
}
// { user | name: 'new name' }
fn (g mut Gen) assoc(node ast.Assoc) {
g.writeln('// assoc')
if node.typ == 0 {
return
}
styp := g.typ(node.typ)
g.writeln('($styp){')
for i, field in node.fields {
g.write('\t.$field = ')
g.expr(node.exprs[i])
g.writeln(', ')
}
// Copy the rest of the fields.
sym := g.table.get_type_symbol(node.typ)
info := sym.info as table.Struct
for field in info.fields {
if field.name in node.fields {
continue
}
g.writeln('\t.$field.name = ${node.var_name}.$field.name,')
}
g.write('}')
if g.is_amp {
g.write(', sizeof($styp))')
}
}
fn (g mut Gen) call_args(args []ast.CallArg) {
for i, arg in args {
if table.type_is_variadic(arg.expected_type) {
struct_name := 'varg_' + g.typ(arg.expected_type).replace('*', '_ptr')
len := args.len - i
type_str := int(arg.expected_type).str()
if len > g.varaidic_args[type_str] {
g.varaidic_args[type_str] = len
}
g.write('($struct_name){.len=$len,.args={')
for j in i .. args.len {
g.ref_or_deref_arg(args[j])
g.expr(args[j].expr)
if j < args.len - 1 {
g.write(', ')
}
}
g.write('}}')
break
}
if arg.expected_type != 0 {
g.ref_or_deref_arg(arg)
}
g.expr(arg.expr)
if i != args.len - 1 {
g.write(', ')
}
}
}
[inline]
fn (g mut Gen) ref_or_deref_arg(arg ast.CallArg) {
arg_is_ptr := table.type_is_ptr(arg.expected_type) || arg.expected_type == table.voidptr_type_idx
expr_is_ptr := table.type_is_ptr(arg.typ)
if arg.is_mut && !arg_is_ptr {
g.write('&/*mut*/')
}
else if arg_is_ptr && !expr_is_ptr {
g.write('&/*q*/')
}
else if !arg_is_ptr && expr_is_ptr {
// Dereference a pointer if a value is required
g.write('*/*d*/')
}
}
fn verror(s string) {
println('cgen error: $s')
// exit(1)
}
const (
// TODO all builtin types must be lowercase
builtins = ['string', 'array', 'KeyValue', 'DenseArray', 'map', 'Option']
)
fn (g mut Gen) write_builtin_types() {
mut builtin_types := []table.TypeSymbol // builtin types
// builtin types need to be on top
// everything except builtin will get sorted
for builtin_name in builtins {
builtin_types << g.table.types[g.table.type_idxs[builtin_name]]
}
g.write_types(builtin_types)
}
// C struct definitions, ordered
// Sort the types, make sure types that are referenced by other types
// are added before them.
fn (g mut Gen) write_sorted_types() {
mut types := []table.TypeSymbol // structs that need to be sorted
for typ in g.table.types {
if !(typ.name in builtins) {
types << typ
}
}
// sort structs
types_sorted := g.sort_structs(types)
// Generate C code
g.definitions.writeln('// builtin types:')
// g.write_types(builtin_types)
g.definitions.writeln('//------------------ #endbuiltin')
g.write_types(types_sorted)
}
fn (g mut Gen) write_types(types []table.TypeSymbol) {
for i, typ in types {
if typ.name.starts_with('C.') {
continue
}
// sym := g.table.get_type_symbol(typ)
name := typ.name.replace('.', '__')
match typ.info {
table.Struct {
info := typ.info as table.Struct
// g.definitions.writeln('typedef struct {')
g.definitions.writeln('struct $name {')
for field in info.fields {
type_name := g.typ(field.typ)
g.definitions.writeln('\t$type_name $field.name;')
}
// g.definitions.writeln('} $name;\n')
//
g.definitions.writeln('};\n')
g.typedefs.writeln('#define _type_idx_$name $i')
}
// table.Alias, table.SumType { TODO
table.Alias {
g.typedefs.writeln('#define _type_idx_$name $i')
}
table.Enum {
g.definitions.writeln('typedef enum {')
for j, val in it.vals {
g.definitions.writeln('\t${name}_$val, // $j')
}
g.definitions.writeln('} $name;\n')
}
table.SumType {
g.typedefs.writeln('#define _type_idx_$name $i')
g.definitions.writeln('// Sum type')
g.definitions.writeln('
typedef struct {
void* obj;
int typ;
} $name;')
}
else {}
}
}
}
// sort structs by dependant fields
fn (g &Gen) sort_structs(types []table.TypeSymbol) []table.TypeSymbol {
mut dep_graph := depgraph.new_dep_graph()
// types name list
mut type_names := []string
for typ in types {
type_names << typ.name
}
// loop over types
for t in types {
// create list of deps
mut field_deps := []string
match t.info {
table.Struct {
info := t.info as table.Struct
for field in info.fields {
// Need to handle fixed size arrays as well (`[10]Point`)
// ft := if field.typ.starts_with('[') { field.typ.all_after(']') } else { field.typ }
dep := g.table.get_type_symbol(field.typ).name
// skip if not in types list or already in deps
if !(dep in type_names) || dep in field_deps || table.type_is_ptr(field.typ) {
continue
}
field_deps << dep
}
}
else {}
}
// add type and dependant types to graph
dep_graph.add(t.name, field_deps)
}
// sort graph
dep_graph_sorted := dep_graph.resolve()
if !dep_graph_sorted.acyclic {
verror('cgen.sort_structs(): the following structs form a dependency cycle:\n' + dep_graph_sorted.display_cycles() + '\nyou can solve this by making one or both of the dependant struct fields references, eg: field &MyStruct' + '\nif you feel this is an error, please create a new issue here: https://github.com/vlang/v/issues and tag @joe-conigliaro')
}
// sort types
mut types_sorted := []table.TypeSymbol
for node in dep_graph_sorted.nodes {
types_sorted << g.table.types[g.table.type_idxs[node.name]]
}
return types_sorted
}
fn (g mut Gen) gen_filter(node ast.MethodCallExpr) {
tmp := g.new_tmp_var()
buf := g.out.buf[g.stmt_start_pos..]
s := string(buf.clone()) // the already generated part of current statement
g.out.go_back(s.len)
// println('filter s="$s"')
sym := g.table.get_type_symbol(node.return_type)
if sym.kind != .array {
verror('filter() requires an array')
}
info := sym.info as table.Array
styp := g.typ(node.return_type)
elem_type_str := g.typ(info.elem_type)
g.write('\nint ${tmp}_len = ')
g.expr(node.expr)
g.writeln('.len;')
g.writeln('$styp $tmp = new_array(0, ${tmp}_len, sizeof($elem_type_str));')
g.writeln('for (int i = 0; i < ${tmp}_len; i++) {')
g.write(' $elem_type_str it = (($elem_type_str*) ')
g.expr(node.expr)
g.writeln('.data)[i];')
g.write('if (')
g.expr(node.args[0].expr) // the first arg is the filter condition
g.writeln(') array_push(&$tmp, &it); \n }')
g.write(s)
g.write(' ')
g.write(tmp)
}
// `a in [1,2,3]` => `a == 1 || a == 2 || a == 3`
fn (g mut Gen) in_optimization(left ast.Expr, right ast.ArrayInit) {
is_str := right.elem_type == table.string_type
for i, array_expr in right.exprs {
if is_str {
g.write('string_eq(')
}
g.expr(left)
if is_str {
g.write(', ')
}
else {
g.write(' == ')
}
g.expr(array_expr)
if is_str {
g.write(')')
}
if i < right.exprs.len - 1 {
g.write(' || ')
}
}
}
fn op_to_fn_name(name string) string {
return match name {
'+'{
'_op_plus'
}
'-'{
'_op_minus'
}
'*'{
'_op_mul'
}
'/'{
'_op_div'
}
'%'{
'_op_mod'
}
else {
'bad op $name'}
}
}