mirror of
				https://github.com/vlang/v.git
				synced 2023-08-10 21:13:21 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			238 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			V
		
	
	
	
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			V
		
	
	
	
	
	
| // Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| module rand
 | |
| 
 | |
| import rand.util
 | |
| import rand.wyrand
 | |
| import time
 | |
| 
 | |
| // Configuration struct for creating a new instance of the default RNG.
 | |
| pub struct PRNGConfigStruct {
 | |
| 	seed []u32 = util.time_seed_array(2)
 | |
| }
 | |
| 
 | |
| __global ( default_rng &wyrand.WyRandRNG )
 | |
| 
 | |
| fn init() {
 | |
| 	default_rng = new_default({})
 | |
| }
 | |
| 
 | |
| // new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance.
 | |
| pub fn new_default(config PRNGConfigStruct) &wyrand.WyRandRNG {
 | |
| 	mut rng := &wyrand.WyRandRNG{}
 | |
| 	rng.seed(config.seed)
 | |
| 	return rng
 | |
| }
 | |
| 
 | |
| // seed sets the given array of `u32` values as the seed for the `default_rng`.
 | |
| pub fn seed(seed []u32) {
 | |
| 	default_rng.seed(seed)
 | |
| }
 | |
| 
 | |
| // u32() returns a uniformly distributed u32 in _[0, 2<sup>32</sup>)_
 | |
| pub fn u32() u32 {
 | |
| 	return default_rng.u32()
 | |
| }
 | |
| 
 | |
| // u64() returns a uniformly distributed u64 in _[0, 2<sup>64</sup>)_
 | |
| pub fn u64() u64 {
 | |
| 	return default_rng.u64()
 | |
| }
 | |
| 
 | |
| // u32n(max) returns a uniformly distributed pseudorandom 32-bit signed positive u32 in _[0, max)_
 | |
| pub fn u32n(max u32) u32 {
 | |
| 	return default_rng.u32n(max)
 | |
| }
 | |
| 
 | |
| // u64n(max) returns a uniformly distributed pseudorandom 64-bit signed positive u64 in _[0, max)_
 | |
| pub fn u64n(max u64) u64 {
 | |
| 	return default_rng.u64n(max)
 | |
| }
 | |
| 
 | |
| // u32_in_range(min, max) returns a uniformly distributed pseudorandom 32-bit unsigned u32 in _[min, max)_
 | |
| pub fn u32_in_range(min u32, max u32) u32 {
 | |
| 	return default_rng.u32_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // u64_in_range(min, max) returns a uniformly distributed pseudorandom 64-bit unsigned u64 in _[min, max)_
 | |
| pub fn u64_in_range(min u64, max u64) u64 {
 | |
| 	return default_rng.u64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int() returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) int
 | |
| pub fn int() int {
 | |
| 	return default_rng.int()
 | |
| }
 | |
| 
 | |
| // intn(max) returns a uniformly distributed pseudorandom 32-bit signed positive int in _[0, max)_
 | |
| pub fn intn(max int) int {
 | |
| 	return default_rng.intn(max)
 | |
| }
 | |
| 
 | |
| // int_in_range(min, max) returns a uniformly distributed pseudorandom
 | |
| // 32-bit signed int in [min, max). Both min and max can be negative, but we must have _min < max_.
 | |
| pub fn int_in_range(min int, max int) int {
 | |
| 	return default_rng.int_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int31() returns a uniformly distributed pseudorandom 31-bit signed positive int
 | |
| pub fn int31() int {
 | |
| 	return default_rng.int31()
 | |
| }
 | |
| 
 | |
| // i64() returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) i64
 | |
| pub fn i64() i64 {
 | |
| 	return default_rng.i64()
 | |
| }
 | |
| 
 | |
| // i64n(max) returns a uniformly distributed pseudorandom 64-bit signed positive i64 in _[0, max)_
 | |
| pub fn i64n(max i64) i64 {
 | |
| 	return default_rng.i64n(max)
 | |
| }
 | |
| 
 | |
| // i64_in_range(min, max) returns a uniformly distributed pseudorandom 64-bit signed int in _[min, max)_
 | |
| pub fn i64_in_range(min i64, max i64) i64 {
 | |
| 	return default_rng.i64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // int63() returns a uniformly distributed pseudorandom 63-bit signed positive int
 | |
| pub fn int63() i64 {
 | |
| 	return default_rng.int63()
 | |
| }
 | |
| 
 | |
| // f32() returns a uniformly distributed 32-bit floating point in _[0, 1)_
 | |
| pub fn f32() f32 {
 | |
| 	return default_rng.f32()
 | |
| }
 | |
| 
 | |
| // f64() returns a uniformly distributed 64-bit floating point in _[0, 1)_
 | |
| pub fn f64() f64 {
 | |
| 	return default_rng.f64()
 | |
| }
 | |
| 
 | |
| // f32n() returns a uniformly distributed 32-bit floating point in _[0, max)_
 | |
| pub fn f32n(max f32) f32 {
 | |
| 	return default_rng.f32n(max)
 | |
| }
 | |
| 
 | |
| // f64n() returns a uniformly distributed 64-bit floating point in _[0, max)_
 | |
| pub fn f64n(max f64) f64 {
 | |
| 	return default_rng.f64n(max)
 | |
| }
 | |
| 
 | |
| // f32_in_range(min, max) returns a uniformly distributed 32-bit floating point in _[min, max)_
 | |
| pub fn f32_in_range(min f32, max f32) f32 {
 | |
| 	return default_rng.f32_in_range(min, max)
 | |
| }
 | |
| 
 | |
| // f64_in_range(min, max) returns a uniformly distributed 64-bit floating point in _[min, max)_
 | |
| pub fn f64_in_range(min f64, max f64) f64 {
 | |
| 	return default_rng.f64_in_range(min, max)
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
 | |
| )
 | |
| 
 | |
| pub fn string(len int) string {
 | |
| 	mut buf := malloc(len)
 | |
| 	for i in 0 .. len {
 | |
| 		unsafe {
 | |
| 			buf[i] = chars[intn(chars.len)]
 | |
| 		}
 | |
| 	}
 | |
| 	return unsafe {buf.vstring_with_len(len)}
 | |
| }
 | |
| 
 | |
| // rand.uuid_v4 generate a completely random UUID (v4)
 | |
| // See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
 | |
| pub fn uuid_v4() string {
 | |
| 	buflen := 36
 | |
| 	mut buf := malloc(37)
 | |
| 	mut i_buf := 0
 | |
| 	mut x := u64(0)
 | |
| 	mut d := byte(0)
 | |
| 	for i_buf < buflen {
 | |
| 		mut c := 0
 | |
| 		x = default_rng.u64()
 | |
| 		// do most of the bit manipulation at once:
 | |
| 		x &= 0x0F0F0F0F0F0F0F0F
 | |
| 		x += 0x3030303030303030
 | |
| 		// write the ASCII codes to the buffer:
 | |
| 		for c < 8 && i_buf < buflen {
 | |
| 			d = byte(x)
 | |
| 			unsafe {
 | |
| 				buf[i_buf] = if d > 0x39 { d + 0x27 } else { d }
 | |
| 			}
 | |
| 			i_buf++
 | |
| 			c++
 | |
| 			x = x >> 8
 | |
| 		}
 | |
| 	}
 | |
| 	// there are still some random bits in x:
 | |
| 	x = x >> 8
 | |
| 	d = byte(x)
 | |
| 	unsafe {
 | |
| 		buf[19] = if d > 0x39 { d + 0x27 } else { d }
 | |
| 		buf[8] = `-`
 | |
| 		buf[13] = `-`
 | |
| 		buf[18] = `-`
 | |
| 		buf[23] = `-`
 | |
| 		buf[14] = `4`
 | |
| 		buf[buflen] = 0
 | |
| 	}
 | |
| 	return unsafe {buf.vstring_with_len(buflen)}
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ'
 | |
| )
 | |
| 
 | |
| // rand.ulid generates an Unique Lexicographically sortable IDentifier.
 | |
| // See https://github.com/ulid/spec .
 | |
| // NB: ULIDs can leak timing information, if you make them public, because
 | |
| // you can infer the rate at which some resource is being created, like
 | |
| // users or business transactions.
 | |
| // (https://news.ycombinator.com/item?id=14526173)
 | |
| pub fn ulid() string {
 | |
| 	return ulid_at_millisecond(time.utc().unix_time_milli())
 | |
| }
 | |
| 
 | |
| pub fn ulid_at_millisecond(unix_time_milli u64) string {
 | |
| 	buflen := 26
 | |
| 	mut buf := malloc(27)
 | |
| 	mut t := unix_time_milli
 | |
| 	mut i := 9
 | |
| 	for i >= 0 {
 | |
| 		unsafe {
 | |
| 			buf[i] = ulid_encoding[t & 0x1F]
 | |
| 		}
 | |
| 		t = t >> 5
 | |
| 		i--
 | |
| 	}
 | |
| 	// first rand set
 | |
| 	mut x := default_rng.u64()
 | |
| 	i = 10
 | |
| 	for i < 19 {
 | |
| 		unsafe {
 | |
| 			buf[i] = ulid_encoding[x & 0x1F]
 | |
| 		}
 | |
| 		x = x >> 5
 | |
| 		i++
 | |
| 	}
 | |
| 	// second rand set
 | |
| 	x = default_rng.u64()
 | |
| 	for i < 26 {
 | |
| 		unsafe {
 | |
| 			buf[i] = ulid_encoding[x & 0x1F]
 | |
| 		}
 | |
| 		x = x >> 5
 | |
| 		i++
 | |
| 	}
 | |
| 	unsafe {
 | |
| 		buf[26] = 0
 | |
| 	}
 | |
| 	return unsafe {buf.vstring_with_len(buflen)}
 | |
| }
 | 
