1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/builtin/int.v
Alexander Medvednikov 6756d28595 all: 2023 copyright
2023-03-28 22:55:57 +02:00

596 lines
13 KiB
V

// Copyright (c) 2019-2023 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module builtin
//
// ----- value to string functions -----
//
// type u8 = byte
type byte = u8
type i32 = int
// ptr_str returns the address of `ptr` as a `string`.
pub fn ptr_str(ptr voidptr) string {
buf1 := u64(ptr).hex()
return buf1
}
// pub fn nil_str(x voidptr) string {
// return 'nil'
//}
// str returns string equivalent of x
pub fn (x isize) str() string {
return i64(x).str()
}
// str returns string equivalent of x
pub fn (x usize) str() string {
return u64(x).str()
}
// str returns string equivalent of cptr
pub fn (cptr &char) str() string {
return u64(cptr).hex()
}
const (
// digit pairs in reverse order
digit_pairs = '00102030405060708090011121314151617181910212223242526272829203132333435363738393041424344454647484940515253545556575859506162636465666768696071727374757677787970818283848586878889809192939495969798999'
)
// This implementation is the quickest with gcc -O2
// str_l returns the string representation of the integer nn with max chars.
[direct_array_access; inline]
fn (nn int) str_l(max int) string {
unsafe {
mut n := i64(nn)
mut d := 0
if n == 0 {
return '0'
}
mut is_neg := false
if n < 0 {
n = -n
is_neg = true
}
mut index := max
mut buf := malloc_noscan(max + 1)
buf[index] = 0
index--
for n > 0 {
n1 := int(n / 100)
// calculate the digit_pairs start index
d = int(u32(int(n) - (n1 * 100)) << 1)
n = n1
buf[index] = digit_pairs.str[d]
index--
d++
buf[index] = digit_pairs.str[d]
index--
}
index++
// remove head zero
if d < 20 {
index++
}
// Prepend - if it's negative
if is_neg {
index--
buf[index] = `-`
}
diff := max - index
vmemmove(buf, voidptr(buf + index), diff + 1)
/*
// === manual memory move for bare metal ===
mut c:= 0
for c < diff {
buf[c] = buf[c+index]
c++
}
buf[c] = 0
*/
return tos(buf, diff)
// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
}
}
// str returns the value of the `i8` as a `string`.
// Example: assert i8(-2).str() == '-2'
pub fn (n i8) str() string {
return int(n).str_l(5)
}
// str returns the value of the `i16` as a `string`.
// Example: assert i16(-20).str() == '-20'
pub fn (n i16) str() string {
return int(n).str_l(7)
}
// str returns the value of the `u16` as a `string`.
// Example: assert u16(20).str() == '20'
pub fn (n u16) str() string {
return int(n).str_l(7)
}
// str returns the value of the `int` as a `string`.
// Example: assert int(-2020).str() == '-2020'
pub fn (n int) str() string {
return n.str_l(12)
}
// str returns the value of the `u32` as a `string`.
// Example: assert u32(20000).str() == '20000'
[direct_array_access; inline]
pub fn (nn u32) str() string {
unsafe {
mut n := nn
mut d := u32(0)
if n == 0 {
return '0'
}
max := 12
mut buf := malloc_noscan(max + 1)
mut index := max
buf[index] = 0
index--
for n > 0 {
n1 := n / u32(100)
d = ((n - (n1 * u32(100))) << u32(1))
n = n1
buf[index] = digit_pairs[d]
index--
d++
buf[index] = digit_pairs[d]
index--
}
index++
// remove head zero
if d < u32(20) {
index++
}
diff := max - index
vmemmove(buf, voidptr(buf + index), diff + 1)
return tos(buf, diff)
// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
}
}
// str returns the value of the `int_literal` as a `string`.
[inline]
pub fn (n int_literal) str() string {
return i64(n).str()
}
// str returns the value of the `i64` as a `string`.
// Example: assert i64(-200000).str() == '-200000'
[direct_array_access; inline]
pub fn (nn i64) str() string {
unsafe {
mut n := nn
mut d := i64(0)
if n == 0 {
return '0'
} else if n == i64(-9223372036854775807 - 1) {
// math.min_i64
return '-9223372036854775808'
}
max := 20
mut buf := malloc_noscan(max + 1)
mut is_neg := false
if n < 0 {
n = -n
is_neg = true
}
mut index := max
buf[index] = 0
index--
for n > 0 {
n1 := n / i64(100)
d = (u32(n - (n1 * i64(100))) << i64(1))
n = n1
buf[index] = digit_pairs[d]
index--
d++
buf[index] = digit_pairs[d]
index--
}
index++
// remove head zero
if d < i64(20) {
index++
}
// Prepend - if it's negative
if is_neg {
index--
buf[index] = `-`
}
diff := max - index
vmemmove(buf, voidptr(buf + index), diff + 1)
return tos(buf, diff)
// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
}
}
// str returns the value of the `u64` as a `string`.
// Example: assert u64(2000000).str() == '2000000'
[direct_array_access; inline]
pub fn (nn u64) str() string {
unsafe {
mut n := nn
mut d := u64(0)
if n == 0 {
return '0'
}
max := 20
mut buf := malloc_noscan(max + 1)
mut index := max
buf[index] = 0
index--
for n > 0 {
n1 := n / 100
d = ((n - (n1 * 100)) << 1)
n = n1
buf[index] = digit_pairs[d]
index--
d++
buf[index] = digit_pairs[d]
index--
}
index++
// remove head zero
if d < 20 {
index++
}
diff := max - index
vmemmove(buf, voidptr(buf + index), diff + 1)
return tos(buf, diff)
// return tos(memdup(&buf[0] + index, (max - index)), (max - index))
}
}
// str returns the value of the `bool` as a `string`.
// Example: assert (2 > 1).str() == 'true'
pub fn (b bool) str() string {
if b {
return 'true'
}
return 'false'
}
//
// ----- value to hex string functions -----
//
// u64_to_hex converts the number `nn` to a (zero padded if necessary) hexadecimal `string`.
[direct_array_access; inline]
fn u64_to_hex(nn u64, len u8) string {
mut n := nn
mut buf := [17]u8{}
buf[len] = 0
mut i := 0
for i = len - 1; i >= 0; i-- {
d := u8(n & 0xF)
buf[i] = if d < 10 { d + `0` } else { d + 87 }
n = n >> 4
}
return unsafe { tos(memdup(&buf[0], len + 1), len) }
}
// u64_to_hex_no_leading_zeros converts the number `nn` to hexadecimal `string`.
[direct_array_access; inline]
fn u64_to_hex_no_leading_zeros(nn u64, len u8) string {
mut n := nn
mut buf := [17]u8{}
buf[len] = 0
mut i := 0
for i = len - 1; i >= 0; i-- {
d := u8(n & 0xF)
buf[i] = if d < 10 { d + `0` } else { d + 87 }
n = n >> 4
if n == 0 {
break
}
}
res_len := len - i
return unsafe { tos(memdup(&buf[i], res_len + 1), res_len) }
}
// hex returns the value of the `byte` as a hexadecimal `string`.
// Note that the output is zero padded for values below 16.
// Example: assert u8(2).hex() == '02'
// Example: assert u8(15).hex() == '0f'
// Example: assert u8(255).hex() == 'ff'
pub fn (nn u8) hex() string {
if nn == 0 {
return '00'
}
return u64_to_hex(nn, 2)
}
// hex returns the value of the `i8` as a hexadecimal `string`.
// Note that the output is zero padded for values below 16.
// Example: assert i8(8).hex() == '08'
// Example: assert i8(10).hex() == '0a'
// Example: assert i8(15).hex() == '0f'
pub fn (nn i8) hex() string {
if nn == 0 {
return '00'
}
return u64_to_hex(u64(nn), 2)
}
// hex returns the value of the `u16` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert u16(2).hex() == '2'
// Example: assert u16(200).hex() == 'c8'
pub fn (nn u16) hex() string {
if nn == 0 {
return '0'
}
return u64_to_hex_no_leading_zeros(nn, 4)
}
// hex returns the value of the `i16` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert i16(2).hex() == '2'
// Example: assert i16(200).hex() == 'c8'
pub fn (nn i16) hex() string {
return u16(nn).hex()
}
// hex returns the value of the `u32` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert u32(2).hex() == '2'
// Example: assert u32(200).hex() == 'c8'
pub fn (nn u32) hex() string {
if nn == 0 {
return '0'
}
return u64_to_hex_no_leading_zeros(nn, 8)
}
// hex returns the value of the `int` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert int(2).hex() == '2'
// Example: assert int(200).hex() == 'c8'
pub fn (nn int) hex() string {
return u32(nn).hex()
}
// hex2 returns the value of the `int` as a `0x`-prefixed hexadecimal `string`.
// Note that the output after `0x` is ***not*** zero padded.
// Example: assert int(8).hex2() == '0x8'
// Example: assert int(15).hex2() == '0xf'
// Example: assert int(18).hex2() == '0x12'
pub fn (n int) hex2() string {
return '0x' + n.hex()
}
// hex returns the value of the `u64` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert u64(2).hex() == '2'
// Example: assert u64(2000).hex() == '7d0'
pub fn (nn u64) hex() string {
if nn == 0 {
return '0'
}
return u64_to_hex_no_leading_zeros(nn, 16)
}
// hex returns the value of the `i64` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// Example: assert i64(2).hex() == '2'
// Example: assert i64(-200).hex() == 'ffffffffffffff38'
// Example: assert i64(2021).hex() == '7e5'
pub fn (nn i64) hex() string {
return u64(nn).hex()
}
// hex returns the value of the `int_literal` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
pub fn (nn int_literal) hex() string {
return u64(nn).hex()
}
// hex returns the value of the `voidptr` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
pub fn (nn voidptr) str() string {
return '0x' + u64(nn).hex()
}
// hex returns the value of the `byteptr` as a hexadecimal `string`.
// Note that the output is ***not*** zero padded.
// pub fn (nn byteptr) str() string {
pub fn (nn byteptr) str() string {
return '0x' + u64(nn).hex()
}
pub fn (nn charptr) str() string {
return '0x' + u64(nn).hex()
}
pub fn (nn u8) hex_full() string {
return u64_to_hex(u64(nn), 2)
}
pub fn (nn i8) hex_full() string {
return u64_to_hex(u64(nn), 2)
}
pub fn (nn u16) hex_full() string {
return u64_to_hex(u64(nn), 4)
}
pub fn (nn i16) hex_full() string {
return u64_to_hex(u64(nn), 4)
}
pub fn (nn u32) hex_full() string {
return u64_to_hex(u64(nn), 8)
}
pub fn (nn int) hex_full() string {
return u64_to_hex(u64(nn), 8)
}
pub fn (nn i64) hex_full() string {
return u64_to_hex(u64(nn), 16)
}
pub fn (nn voidptr) hex_full() string {
return u64_to_hex(u64(nn), 16)
}
pub fn (nn int_literal) hex_full() string {
return u64_to_hex(u64(nn), 16)
}
// hex_full returns the value of the `u64` as a *full* 16-digit hexadecimal `string`.
// Example: assert u64(2).hex_full() == '0000000000000002'
// Example: assert u64(255).hex_full() == '00000000000000ff'
pub fn (nn u64) hex_full() string {
return u64_to_hex(nn, 16)
}
// str returns the contents of `byte` as a zero terminated `string`.
// See also: [`byte.ascii_str`](#byte.ascii_str)
// Example: assert u8(111).str() == '111'
pub fn (b u8) str() string {
return int(b).str_l(7)
}
// ascii_str returns the contents of `byte` as a zero terminated ASCII `string` character.
// Example: assert u8(97).ascii_str() == 'a'
pub fn (b u8) ascii_str() string {
mut str := string{
str: unsafe { malloc_noscan(2) }
len: 1
}
unsafe {
str.str[0] = b
str.str[1] = 0
}
// println(str)
return str
}
// str_escaped returns the contents of `byte` as an escaped `string`.
// Example: assert u8(0).str_escaped() == r'`\0`'
[manualfree]
pub fn (b u8) str_escaped() string {
str := match b {
0 {
r'`\0`'
}
7 {
r'`\a`'
}
8 {
r'`\b`'
}
9 {
r'`\t`'
}
10 {
r'`\n`'
}
11 {
r'`\v`'
}
12 {
r'`\f`'
}
13 {
r'`\r`'
}
27 {
r'`\e`'
}
32...126 {
b.ascii_str()
}
else {
xx := b.hex()
yy := '0x' + xx
unsafe { xx.free() }
yy
}
}
return str
}
// is_capital returns `true`, if the byte is a Latin capital letter.
// Example: assert `H`.is_capital() == true
// Example: assert `h`.is_capital() == false
[inline]
pub fn (c u8) is_capital() bool {
return c >= `A` && c <= `Z`
}
// clone clones the byte array, and returns the newly created copy.
pub fn (b []u8) clone() []u8 {
mut res := []u8{len: b.len}
// mut res := make([]u8, {repeat:b.len})
for i in 0 .. b.len {
res[i] = b[i]
}
return res
}
// bytestr produces a string from *all* the bytes in the array.
// Note: the returned string will have .len equal to the array.len,
// even when some of the array bytes were `0`.
// If you want to get a V string, that contains only the bytes till
// the first `0` byte, use `tos_clone(&u8(array.data))` instead.
pub fn (b []u8) bytestr() string {
unsafe {
buf := malloc_noscan(b.len + 1)
vmemcpy(buf, b.data, b.len)
buf[b.len] = 0
return tos(buf, b.len)
}
}
// byterune attempts to decode a sequence of bytes
// from utf8 to utf32 and return the result as a rune
// it will produce an error if there are more than
// four bytes in the array.
pub fn (b []u8) byterune() !rune {
r := b.utf8_to_utf32()!
return rune(r)
}
// repeat returns a new string with `count` number of copies of the byte it was called on.
pub fn (b u8) repeat(count int) string {
if count < 0 {
panic('byte.repeat: count is negative: ${count}')
} else if count == 0 {
return ''
} else if count == 1 {
return b.ascii_str()
}
mut ret := unsafe { malloc_noscan(count + 1) }
for i in 0 .. count {
unsafe {
ret[i] = b
}
}
new_len := count
unsafe {
ret[new_len] = 0
}
return unsafe { ret.vstring_with_len(new_len) }
}
// for atomic ints, internal
fn _Atomic__int_str(x int) string {
return x.str()
}