1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/examples/term.ui/vyper.v

473 lines
11 KiB
V

// import modules for use in app
import term.ui as termui
import rand
// define some global constants
const (
block_size = 1
buffer = 10
green = termui.Color{0, 255, 0}
grey = termui.Color{150, 150, 150}
white = termui.Color{255, 255, 255}
blue = termui.Color{0, 0, 255}
red = termui.Color{255, 0, 0}
black = termui.Color{0, 0, 0}
)
// what edge of the screen are you facing
enum Orientation {
top
right
bottom
left
}
// what's the current state of the game
enum GameState {
pause
gameover
game
oob // snake out-of-bounds
}
// simple 2d vector representation
struct Vec {
mut:
x int
y int
}
// determine orientation from vector (hacky way to set facing from velocity)
fn (v Vec) facing() Orientation {
result := if v.x >= 0 {
Orientation.right
} else if v.x < 0 {
Orientation.left
} else if v.y >= 0 {
Orientation.bottom
} else {
Orientation.top
}
return result
}
// generate a random vector with x in [min_x, max_x] and y in [min_y, max_y]
fn (mut v Vec) randomize(min_x int, min_y int, max_x int, max_y int) {
v.x = rand.int_in_range(min_x, max_x)
v.y = rand.int_in_range(min_y, max_y)
}
// part of snake's body representation
struct BodyPart {
mut:
pos Vec = {
x: block_size
y: block_size
}
color termui.Color = green
facing Orientation = .top
}
// snake representation
struct Snake {
mut:
app &App
direction Orientation
body []BodyPart
velocity Vec = Vec{
x: 0
y: 0
}
}
// length returns the snake's current length
fn (s Snake) length() int {
return s.body.len
}
// impulse provides a impulse to change the snake's direction
fn (mut s Snake) impulse(direction Orientation) {
mut vec := Vec{}
match direction {
.top {
vec.x = 0
vec.y = -1 * block_size
}
.right {
vec.x = 2 * block_size
vec.y = 0
}
.bottom {
vec.x = 0
vec.y = block_size
}
.left {
vec.x = -2 * block_size
vec.y = 0
}
}
s.direction = direction
s.velocity = vec
}
// move performs the calculations for the snake's movements
fn (mut s Snake) move() {
mut i := s.body.len - 1
width := s.app.width
height := s.app.height
// move the parts of the snake as appropriate
for i = s.body.len - 1; i >= 0; i-- {
mut piece := s.body[i]
if i > 0 { // just move the body of the snake up one position
piece.pos = s.body[i - 1].pos
piece.facing = s.body[i - 1].facing
} else { // verify that the move is valid and move the head if so
piece.facing = s.direction
new_x := piece.pos.x + s.velocity.x
new_y := piece.pos.y + s.velocity.y
piece.pos.x += if new_x > block_size && new_x < width - block_size {
s.velocity.x
} else {
0
}
piece.pos.y += if new_y > block_size && new_y < height - block_size {
s.velocity.y
} else {
0
}
}
s.body[i] = piece
}
}
// grow add another part to the snake when it catches the rat
fn (mut s Snake) grow() {
head := s.get_tail()
mut pos := Vec{}
// add the segment on the opposite side of the previous tail
match head.facing {
.bottom {
pos.x = head.pos.x
pos.y = head.pos.y - block_size
}
.left {
pos.x = head.pos.x + block_size
pos.y = head.pos.y
}
.top {
pos.x = head.pos.x
pos.y = head.pos.y + block_size
}
.right {
pos.x = head.pos.x - block_size
pos.y = head.pos.y
}
}
s.body << BodyPart{
pos: pos
facing: head.facing
}
}
// get_body gets the parts of the snakes body
fn (s Snake) get_body() []BodyPart {
return s.body
}
// get_head get snake's head
fn (s Snake) get_head() BodyPart {
return s.body[0]
}
// get_tail get snake's tail
fn (s Snake) get_tail() BodyPart {
return s.body[s.body.len - 1]
}
// randomize randomizes position and veolcity of snake
fn (mut s Snake) randomize() {
speeds := [-2, 0, 2]
mut pos := s.get_head().pos
pos.randomize(buffer, buffer, s.app.width - buffer, s.app.height - buffer)
for pos.x % 2 != 0 || (pos.x < buffer && pos.x > s.app.width - buffer) {
pos.randomize(buffer, buffer, s.app.width - buffer, s.app.height - buffer)
}
s.velocity.y = rand.int_in_range(-1 * block_size, block_size)
s.velocity.x = speeds[rand.intn(speeds.len)]
s.direction = s.velocity.facing()
s.body[0].pos = pos
}
// check_overlap determine if the snake's looped onto itself
fn (s Snake) check_overlap() bool {
h := s.get_head()
head_pos := h.pos
for i in 2 .. s.length() {
piece_pos := s.body[i].pos
if head_pos.x == piece_pos.x && head_pos.y == piece_pos.y {
return true
}
}
return false
}
fn (s Snake) check_out_of_bounds() bool {
h := s.get_head()
return h.pos.x + s.velocity.x <= block_size
|| h.pos.x + s.velocity.x > s.app.width - s.velocity.x
|| h.pos.y + s.velocity.y <= block_size
|| h.pos.y + s.velocity.y > s.app.height - block_size - s.velocity.y
}
// draw draws the parts of the snake
fn (s Snake) draw() {
mut a := s.app
for part in s.get_body() {
a.termui.set_bg_color(part.color)
a.termui.draw_rect(part.pos.x, part.pos.y, part.pos.x + block_size, part.pos.y + block_size)
$if verbose ? {
text := match part.facing {
.top { '^' }
.bottom { 'v' }
.right { '>' }
.left { '<' }
}
a.termui.set_color(white)
a.termui.draw_text(part.pos.x, part.pos.y, text)
}
}
}
// rat representation
struct Rat {
mut:
pos Vec = {
x: block_size
y: block_size
}
captured bool
color termui.Color = grey
app &App
}
// randomize spawn the rat in a new spot within the playable field
fn (mut r Rat) randomize() {
r.pos.randomize(2 * block_size + buffer, 2 * block_size + buffer, r.app.width - block_size - buffer,
r.app.height - block_size - buffer)
}
struct App {
mut:
termui &termui.Context = 0
snake Snake
rat Rat
width int
height int
redraw bool = true
state GameState = .game
}
// new_game setups the rat and snake for play
fn (mut a App) new_game() {
mut snake := Snake{
body: []BodyPart{len: 1, init: BodyPart{}}
app: a
}
snake.randomize()
mut rat := Rat{
app: a
}
rat.randomize()
a.snake = snake
a.rat = rat
a.state = .game
a.redraw = true
}
// initialize the app and record the width and height of the window
fn init(x voidptr) {
mut app := &App(x)
w, h := app.termui.window_width, app.termui.window_height
app.width = w
app.height = h
app.new_game()
}
// event handles different events for the app as they occur
fn event(e &termui.Event, x voidptr) {
mut app := &App(x)
match e.typ {
.mouse_down {}
.mouse_drag {}
.mouse_up {}
.key_down {
match e.code {
.up, .w { app.move_snake(.top) }
.down, .s { app.move_snake(.bottom) }
.left, .a { app.move_snake(.left) }
.right, .d { app.move_snake(.right) }
.r { app.new_game() }
.c {}
.p { app.state = if app.state == .game { GameState.pause } else { GameState.game } }
.escape, .q { exit(0) }
else { exit(0) }
}
if e.code == .c {
} else if e.code == .escape {
exit(0)
}
}
else {}
}
app.redraw = true
}
// frame perform actions on every tick
fn frame(x voidptr) {
mut app := &App(x)
app.update()
app.draw()
}
// update perform any calculations that are needed before drawing
fn (mut a App) update() {
if a.state == .game {
a.snake.move()
if a.snake.check_out_of_bounds() {
$if verbose ? {
a.snake.body[0].color = red
} $else {
a.state = .oob
}
}
if a.snake.check_overlap() {
a.state = .gameover
return
}
if a.check_capture() {
a.rat.randomize()
a.snake.grow()
}
}
}
// draw write to the screen
fn (mut a App) draw() {
// reset screen
a.termui.clear()
a.termui.set_bg_color(white)
a.termui.draw_empty_rect(1, 1, a.width, a.height)
// determine if a special screen needs to be draw
match a.state {
.gameover {
a.draw_gameover()
a.redraw = false
}
.pause {
a.draw_pause()
}
else {
a.redraw = true
}
}
a.termui.set_color(blue)
a.termui.set_bg_color(white)
a.termui.draw_text(3 * block_size, a.height - (2 * block_size), 'p - (un)pause r - reset q - quit')
// draw the snake, rat, and score if appropriate
if a.redraw {
a.termui.set_bg_color(black)
a.draw_gamescreen()
if a.state == .oob {
a.state = .gameover
}
}
// write to the screen
a.termui.reset_bg_color()
a.termui.flush()
}
// move_snake move the snake in specified direction
fn (mut a App) move_snake(direction Orientation) {
a.snake.impulse(direction)
}
// check_capture determine if the snake overlaps with the rat
fn (a App) check_capture() bool {
snake_pos := a.snake.get_head().pos
rat_pos := a.rat.pos
return snake_pos.x <= rat_pos.x + block_size && snake_pos.x + block_size >= rat_pos.x
&& snake_pos.y <= rat_pos.y + block_size&& snake_pos.y + block_size >= rat_pos.y
}
fn (mut a App) draw_snake() {
a.snake.draw()
}
fn (mut a App) draw_rat() {
a.termui.set_bg_color(a.rat.color)
a.termui.draw_rect(a.rat.pos.x, a.rat.pos.y, a.rat.pos.x + block_size, a.rat.pos.y + block_size)
}
fn (mut a App) draw_gamescreen() {
$if verbose ? {
a.draw_debug()
}
a.draw_score()
a.draw_rat()
a.draw_snake()
}
fn (mut a App) draw_score() {
a.termui.set_color(blue)
a.termui.set_bg_color(white)
score := a.snake.length() - 1
a.termui.draw_text(a.width - (2 * block_size), block_size, '${score:03d}')
}
fn (mut a App) draw_pause() {
a.termui.set_color(blue)
a.termui.draw_text((a.width / 2) - block_size, 3 * block_size, 'Paused!')
}
fn (mut a App) draw_debug() {
a.termui.set_color(blue)
a.termui.set_bg_color(white)
snake := a.snake
a.termui.draw_text(block_size, 1 * block_size, 'Display_width: ${a.width:04d} Display_height: ${a.height:04d}')
a.termui.draw_text(block_size, 2 * block_size, 'Vx: ${snake.velocity.x:+02d} Vy: ${snake.velocity.y:+02d}')
a.termui.draw_text(block_size, 3 * block_size, 'F: $snake.direction')
snake_head := snake.get_head()
rat := a.rat
a.termui.draw_text(block_size, 4 * block_size, 'Sx: ${snake_head.pos.x:+03d} Sy: ${snake_head.pos.y:+03d}')
a.termui.draw_text(block_size, 5 * block_size, 'Rx: ${rat.pos.x:+03d} Ry: ${rat.pos.y:+03d}')
}
fn (mut a App) draw_gameover() {
a.termui.set_bg_color(white)
a.termui.set_color(red)
a.rat.pos = Vec{
x: -1
y: -1
}
x_offset := ' ##### '.len // take half of a line from the game over text and store the length
start_x := (a.width / 2) - x_offset
a.termui.draw_text(start_x, (a.height / 2) - 3 * block_size, ' ##### ####### ')
a.termui.draw_text(start_x, (a.height / 2) - 2 * block_size, ' # # ## # # ###### # # # # ###### ##### ')
a.termui.draw_text(start_x, (a.height / 2) - 1 * block_size, ' # # # ## ## # # # # # # # # ')
a.termui.draw_text(start_x, (a.height / 2) - 0 * block_size, ' # #### # # # ## # ##### # # # # ##### # # ')
a.termui.draw_text(start_x, (a.height / 2) + 1 * block_size, ' # # ###### # # # # # # # # ##### ')
a.termui.draw_text(start_x, (a.height / 2) + 2 * block_size, ' # # # # # # # # # # # # # # ')
a.termui.draw_text(start_x, (a.height / 2) + 3 * block_size, ' ##### # # # # ###### ####### ## ###### # # ')
}
mut app := &App{}
app.termui = termui.init(
user_data: app
event_fn: event
frame_fn: frame
init_fn: init
hide_cursor: true
frame_rate: 10
)
app.termui.run() ?