mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
347 lines
8.1 KiB
V
347 lines
8.1 KiB
V
module big
|
|
|
|
import math.bits
|
|
import strings
|
|
|
|
[direct_array_access; inline]
|
|
fn shrink_tail_zeros(mut a []u32) {
|
|
mut alen := a.len
|
|
for alen > 0 && a[alen - 1] == 0 {
|
|
alen--
|
|
}
|
|
unsafe {
|
|
a.len = alen
|
|
}
|
|
}
|
|
|
|
// suppose operand_a bigger than operand_b and both not null.
|
|
// Both quotient and remaider are already allocated but of length 0
|
|
fn newton_divide_array_by_array(operand_a []u32, operand_b []u32, mut quotient []u32, mut remainder []u32) {
|
|
// tranform back to Integers (on the stack without allocation)
|
|
a := Integer{
|
|
signum: 1
|
|
digits: operand_a
|
|
}
|
|
b := Integer{
|
|
signum: 1
|
|
digits: operand_b
|
|
}
|
|
|
|
k := a.bit_len() + b.bit_len() // a*b < 2**k
|
|
mut x := integer_from_int(2) // 0 < x < 2**(k+1)/b // initial guess for convergence
|
|
// https://en.wikipedia.org/wiki/Division_algorithm#Newton%E2%80%93Raphson_division
|
|
// use 48/17 - 32/17.D (divisor)
|
|
initial_guess := (((integer_from_int(48) - (integer_from_int(32) * b)) * integer_from_i64(0x0f0f0f0f0f0f0f0f)).right_shift(64)).neg() // / 17 == 0x11
|
|
if initial_guess > zero_int {
|
|
x = initial_guess
|
|
}
|
|
mut lastx := integer_from_int(0)
|
|
pow2_k_plus_1 := pow2(k + 1) // outside of the loop to optimize allocatio
|
|
for lastx != x { // main loop
|
|
lastx = x
|
|
x = (x * (pow2_k_plus_1 - (x * b))).right_shift(u32(k))
|
|
}
|
|
if x * b < pow2(k) {
|
|
x.inc()
|
|
}
|
|
mut q := (a * x).right_shift(u32(k))
|
|
// possible adjustments. see literature
|
|
if q * b > a {
|
|
q.dec()
|
|
}
|
|
mut r := a - (q * b)
|
|
if r >= b {
|
|
q.inc()
|
|
r -= b
|
|
}
|
|
quotient = q.digits.clone()
|
|
remainder = r.digits.clone()
|
|
|
|
shrink_tail_zeros(mut remainder)
|
|
}
|
|
|
|
// bit_length returns the number of bits needed to represent the absolute value of the integer a.
|
|
[deprecated: 'use a.bit_len() instead']
|
|
[inline]
|
|
pub fn bit_length(a Integer) int {
|
|
return a.digits.len * 32 - bits.leading_zeros_32(a.digits.last())
|
|
}
|
|
|
|
[direct_array_access; inline]
|
|
fn debug_u32_str(a []u32) string {
|
|
mut sb := strings.new_builder(30)
|
|
sb.write_string('[')
|
|
mut first := true
|
|
for i in 0 .. a.len {
|
|
if !first {
|
|
sb.write_string(', ')
|
|
}
|
|
sb.write_string('0x${a[i].hex()}')
|
|
first = false
|
|
}
|
|
sb.write_string(']')
|
|
return sb.str()
|
|
}
|
|
|
|
[direct_array_access; inline]
|
|
fn found_multiplication_base_case(operand_a []u32, operand_b []u32, mut storage []u32) bool {
|
|
// base case necessary to end recursion
|
|
if operand_a.len == 0 || operand_b.len == 0 {
|
|
storage.clear()
|
|
return true
|
|
}
|
|
|
|
if operand_a.len < operand_b.len {
|
|
multiply_digit_array(operand_b, operand_a, mut storage)
|
|
return true
|
|
}
|
|
|
|
if operand_b.len == 1 {
|
|
multiply_array_by_digit(operand_a, operand_b[0], mut storage)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// karatsuba algorithm for multiplication
|
|
// possible optimisations:
|
|
// - transform one or all the recurrences in loops
|
|
[direct_array_access]
|
|
fn karatsuba_multiply_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
|
|
if found_multiplication_base_case(operand_a, operand_b, mut storage) {
|
|
return
|
|
}
|
|
|
|
// thanks to the base cases we can pass zero-length arrays to the mult func
|
|
half := imax(operand_a.len, operand_b.len) / 2
|
|
a_l := operand_a[0..half]
|
|
a_h := operand_a[half..]
|
|
mut b_l := []u32{}
|
|
mut b_h := []u32{}
|
|
if half <= operand_b.len {
|
|
b_l = operand_b[0..half]
|
|
b_h = operand_b[half..]
|
|
} else {
|
|
b_l = unsafe { operand_b }
|
|
// b_h = []u32{}
|
|
}
|
|
|
|
// use storage for p_1 to avoid allocation and copy later
|
|
multiply_digit_array(a_h, b_h, mut storage)
|
|
|
|
mut p_3 := []u32{len: a_l.len + b_l.len + 1}
|
|
multiply_digit_array(a_l, b_l, mut p_3)
|
|
|
|
mut tmp_1 := []u32{len: imax(a_h.len, a_l.len) + 1}
|
|
mut tmp_2 := []u32{len: imax(b_h.len, b_l.len) + 1}
|
|
add_digit_array(a_h, a_l, mut tmp_1)
|
|
add_digit_array(b_h, b_l, mut tmp_2)
|
|
|
|
mut p_2 := []u32{len: operand_a.len + operand_b.len + 1}
|
|
multiply_digit_array(tmp_1, tmp_2, mut p_2)
|
|
subtract_in_place(mut p_2, storage) // p_1
|
|
subtract_in_place(mut p_2, p_3)
|
|
|
|
// return p_1.left_shift(2 * u32(half * 32)) + p_2.left_shift(u32(half * 32)) + p_3
|
|
left_shift_digits_in_place(mut storage, 2 * half)
|
|
left_shift_digits_in_place(mut p_2, half)
|
|
add_in_place(mut storage, p_2)
|
|
add_in_place(mut storage, p_3)
|
|
|
|
shrink_tail_zeros(mut storage)
|
|
}
|
|
|
|
[direct_array_access]
|
|
fn toom3_multiply_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
|
|
if found_multiplication_base_case(operand_a, operand_b, mut storage) {
|
|
return
|
|
}
|
|
|
|
// After the base case, we have operand_a as the larger integer in terms of digit length
|
|
|
|
// k is the length (in u32 digits) of the lower order slices
|
|
k := (operand_a.len + 2) / 3
|
|
k2 := 2 * k
|
|
|
|
// The pieces of the calculation need to be worked on as proper big.Integers
|
|
// because the intermediate results can be negative. After recombination, the
|
|
// final result will be positive.
|
|
|
|
// Slices of a and b
|
|
a0 := Integer{
|
|
digits: operand_a[0..k]
|
|
signum: 1
|
|
}
|
|
a1 := Integer{
|
|
digits: operand_a[k..k2]
|
|
signum: 1
|
|
}
|
|
a2 := Integer{
|
|
digits: operand_a[k2..]
|
|
signum: 1
|
|
}
|
|
|
|
// Zero arrays by default
|
|
mut b0 := zero_int.clone()
|
|
mut b1 := zero_int.clone()
|
|
mut b2 := zero_int.clone()
|
|
|
|
if operand_b.len < k {
|
|
b0 = Integer{
|
|
digits: operand_b
|
|
signum: 1
|
|
}
|
|
} else if operand_b.len < k2 {
|
|
b0 = Integer{
|
|
digits: operand_b[0..k]
|
|
signum: 1
|
|
}
|
|
b1 = Integer{
|
|
digits: operand_b[k..]
|
|
signum: 1
|
|
}
|
|
} else {
|
|
b0 = Integer{
|
|
digits: operand_b[0..k]
|
|
signum: 1
|
|
}
|
|
b1 = Integer{
|
|
digits: operand_b[k..k2]
|
|
signum: 1
|
|
}
|
|
b2 = Integer{
|
|
digits: operand_b[k2..]
|
|
signum: 1
|
|
}
|
|
}
|
|
|
|
// https://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication#Details
|
|
// DOI: 10.1007/978-3-540-73074-3_10
|
|
|
|
p0 := a0 * b0
|
|
mut ptemp := a2 + a0
|
|
mut qtemp := b2 + b0
|
|
vm1 := (ptemp - a1) * (qtemp - b1)
|
|
ptemp += a1
|
|
qtemp += b1
|
|
p1 := ptemp * qtemp
|
|
p2 := ((ptemp + a2).left_shift(1) - a0) * ((qtemp + b2).left_shift(1) - b0)
|
|
pinf := a2 * b2
|
|
|
|
mut t2 := (p2 - vm1) / three_int
|
|
mut tm1 := (p1 - vm1).right_shift(1)
|
|
mut t1 := p1 - p0
|
|
t2 = (t2 - t1).right_shift(1)
|
|
t1 = (t1 - tm1 - pinf)
|
|
t2 = t2 - pinf.left_shift(1)
|
|
tm1 = tm1 - t2
|
|
|
|
// shift amount
|
|
s := u32(k) << 5
|
|
|
|
result := (((pinf.left_shift(s) + t2).left_shift(s) + t1).left_shift(s) + tm1).left_shift(s) +
|
|
p0
|
|
|
|
storage = result.digits.clone()
|
|
}
|
|
|
|
[inline]
|
|
fn pow2(k int) Integer {
|
|
mut ret := []u32{len: (k >> 5) + 1}
|
|
bit_set(mut ret, k)
|
|
return Integer{
|
|
signum: 1
|
|
digits: ret
|
|
}
|
|
}
|
|
|
|
// optimized left shift in place. amount must be positive
|
|
[direct_array_access]
|
|
fn left_shift_digits_in_place(mut a []u32, amount int) {
|
|
a_len := a.len
|
|
// control or allocate capacity
|
|
for _ in a_len .. a_len + amount {
|
|
a << u32(0)
|
|
}
|
|
for index := a_len - 1; index >= 0; index-- {
|
|
a[index + amount] = a[index]
|
|
}
|
|
for index in 0 .. amount {
|
|
a[index] = u32(0)
|
|
}
|
|
}
|
|
|
|
// optimized right shift in place. amount must be positive
|
|
[direct_array_access]
|
|
fn right_shift_digits_in_place(mut a []u32, amount int) {
|
|
for index := 0; index < a.len - amount; index++ {
|
|
a[index] = a[index + amount]
|
|
}
|
|
for index := a.len - amount; index < a.len; index++ {
|
|
a[index] = u32(0)
|
|
}
|
|
shrink_tail_zeros(mut a)
|
|
}
|
|
|
|
// operand b can be greater than operand a
|
|
// the capacity of both array is supposed to be sufficient
|
|
[direct_array_access; inline]
|
|
fn add_in_place(mut a []u32, b []u32) {
|
|
len_a := a.len
|
|
len_b := b.len
|
|
max := imax(len_a, len_b)
|
|
min := imin(len_a, len_b)
|
|
mut carry := u64(0)
|
|
for index in 0 .. min {
|
|
partial := carry + a[index] + b[index]
|
|
a[index] = u32(partial)
|
|
carry = u32(partial >> 32)
|
|
}
|
|
if len_a >= len_b {
|
|
for index in min .. max {
|
|
partial := carry + a[index]
|
|
a[index] = u32(partial)
|
|
carry = u32(partial >> 32)
|
|
}
|
|
} else {
|
|
for index in min .. max {
|
|
partial := carry + b[index]
|
|
a << u32(partial)
|
|
carry = u32(partial >> 32)
|
|
}
|
|
}
|
|
}
|
|
|
|
// a := a - b supposed a >= b
|
|
[direct_array_access]
|
|
fn subtract_in_place(mut a []u32, b []u32) {
|
|
len_a := a.len
|
|
len_b := b.len
|
|
max := imax(len_a, len_b)
|
|
min := imin(len_a, len_b)
|
|
mut carry := u32(0)
|
|
mut new_carry := u32(0)
|
|
for index in 0 .. min {
|
|
new_carry = if a[index] < (b[index] + carry) {
|
|
u32(1)
|
|
} else {
|
|
u32(0)
|
|
}
|
|
a[index] -= (b[index] + carry)
|
|
carry = new_carry
|
|
}
|
|
if len_a >= len_b {
|
|
for index in min .. max {
|
|
new_carry = if a[index] < carry {
|
|
u32(1)
|
|
} else {
|
|
u32(0)
|
|
}
|
|
a[index] -= carry
|
|
carry = new_carry
|
|
}
|
|
} else { // if len.b > len.a return zero
|
|
a.clear()
|
|
}
|
|
}
|