mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
225 lines
5.7 KiB
V
225 lines
5.7 KiB
V
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module splitmix64
|
|
|
|
import rand.util
|
|
|
|
// Ported from http://xoshiro.di.unimi.it/splitmix64.c
|
|
pub struct SplitMix64RNG {
|
|
mut:
|
|
state u64 = util.time_seed_64()
|
|
has_extra bool
|
|
extra u32
|
|
}
|
|
|
|
// rng.seed(seed_data) sets the seed of the accepting SplitMix64RNG to the given data
|
|
// in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
|
|
pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
|
|
if seed_data.len != 2 {
|
|
eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
|
|
exit(1)
|
|
}
|
|
rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
|
|
rng.has_extra = false
|
|
}
|
|
|
|
// rng.u32() updates the PRNG state and returns the next pseudorandom u32
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u32() u32 {
|
|
if rng.has_extra {
|
|
rng.has_extra = false
|
|
return rng.extra
|
|
}
|
|
full_value := rng.u64()
|
|
lower := u32(full_value & util.lower_mask)
|
|
upper := u32(full_value >> 32)
|
|
rng.extra = upper
|
|
rng.has_extra = true
|
|
return lower
|
|
}
|
|
|
|
// rng.u64() updates the PRNG state and returns the next pseudorandom u64
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u64() u64 {
|
|
rng.state += (0x9e3779b97f4a7c15)
|
|
mut z := rng.state
|
|
z = (z ^ ((z >> u64(30)))) * (0xbf58476d1ce4e5b9)
|
|
z = (z ^ ((z >> u64(27)))) * (0x94d049bb133111eb)
|
|
return z ^ (z >> (31))
|
|
}
|
|
|
|
// rng.u32n(bound) returns a pseudorandom u32 less than the bound
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
|
|
// This function is kept similar to the u64 version
|
|
if bound == 0 {
|
|
eprintln('max must be non-zero')
|
|
exit(1)
|
|
}
|
|
threshold := -bound % bound
|
|
for {
|
|
r := rng.u32()
|
|
if r >= threshold {
|
|
return r % bound
|
|
}
|
|
}
|
|
return u32(0)
|
|
}
|
|
|
|
// rng.u64n(bound) returns a pseudorandom u64 less than the bound
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
|
|
// See pcg32.v for explanation of comment. This algorithm
|
|
// existed before the refactoring.
|
|
if bound == 0 {
|
|
eprintln('max must be non-zero')
|
|
exit(1)
|
|
}
|
|
threshold := -bound % bound
|
|
for {
|
|
r := rng.u64()
|
|
if r >= threshold {
|
|
return r % bound
|
|
}
|
|
}
|
|
return u64(0)
|
|
}
|
|
|
|
// rng.u32n(min, max) returns a pseudorandom u32 value that is guaranteed to be in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u32_in_range(min, max u32) u32 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.u32n(max - min)
|
|
}
|
|
|
|
// rng.u64n(min, max) returns a pseudorandom u64 value that is guaranteed to be in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) u64_in_range(min, max u64) u64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.u64n(max - min)
|
|
}
|
|
|
|
// rng.int() returns a pseudorandom 32-bit int (which may be negative)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) int() int {
|
|
return int(rng.u32())
|
|
}
|
|
|
|
// rng.i64() returns a pseudorandom 64-bit i64 (which may be negative)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) i64() i64 {
|
|
return i64(rng.u64())
|
|
}
|
|
|
|
// rng.int31() returns a pseudorandom 31-bit int which is non-negative
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) int31() int {
|
|
return int(rng.u32() & util.u31_mask) // Set the 32nd bit to 0.
|
|
}
|
|
|
|
// rng.int63() returns a pseudorandom 63-bit int which is non-negative
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) int63() i64 {
|
|
return i64(rng.u64() & util.u63_mask) // Set the 64th bit to 0.
|
|
}
|
|
|
|
// rng.intn(max) returns a pseudorandom int that lies in [0, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) intn(max int) int {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return int(rng.u32n(u32(max)))
|
|
}
|
|
|
|
// rng.i64n(max) returns a pseudorandom int that lies in [0, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return i64(rng.u64n(u64(max)))
|
|
}
|
|
|
|
// rng.int_in_range(min, max) returns a pseudorandom int that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) int_in_range(min, max int) int {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
// This supports negative ranges like [-10, -5) because the difference is positive
|
|
return min + rng.intn(max - min)
|
|
}
|
|
|
|
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) i64_in_range(min, max i64) i64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.i64n(max - min)
|
|
}
|
|
|
|
// rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f32() f32 {
|
|
return f32(rng.u32()) / util.max_u32_as_f32
|
|
}
|
|
|
|
// rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f64() f64 {
|
|
return f64(rng.u64()) / util.max_u64_as_f64
|
|
}
|
|
|
|
// rng.f32n() returns a pseudorandom f32 value in [0, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return rng.f32() * max
|
|
}
|
|
|
|
// rng.f64n() returns a pseudorandom f64 value in [0, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
|
|
if max <= 0 {
|
|
eprintln('max has to be positive.')
|
|
exit(1)
|
|
}
|
|
return rng.f64() * max
|
|
}
|
|
|
|
// rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f32_in_range(min, max f32) f32 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.f32n(max - min)
|
|
}
|
|
|
|
// rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max)
|
|
[inline]
|
|
pub fn (mut rng SplitMix64RNG) f64_in_range(min, max f64) f64 {
|
|
if max <= min {
|
|
eprintln('max must be greater than min')
|
|
exit(1)
|
|
}
|
|
return min + rng.f64n(max - min)
|
|
}
|