mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
1111 lines
26 KiB
V
1111 lines
26 KiB
V
module big
|
||
|
||
import math.bits
|
||
import strings
|
||
import strconv
|
||
|
||
const digit_array = '0123456789abcdefghijklmnopqrstuvwxyz'.bytes()
|
||
|
||
// big.Integer
|
||
// -----------
|
||
// It has the following properties:
|
||
// 1. Every "digit" is an integer in the range [0, 2^32).
|
||
// 2. The signum can be one of three values: -1, 0, +1 for
|
||
// negative, zero, and positive values, respectively.
|
||
// 3. There should be no leading zeros in the digit array.
|
||
// 4. The digits are stored in little endian format, that is,
|
||
// the digits with a lower positional value (towards the right
|
||
// when represented as a string) have a lower index, and vice versa.
|
||
pub struct Integer {
|
||
digits []u32
|
||
pub:
|
||
signum int
|
||
is_const bool
|
||
}
|
||
|
||
[unsafe]
|
||
fn (mut x Integer) free() {
|
||
if x.is_const {
|
||
return
|
||
}
|
||
unsafe { x.digits.free() }
|
||
}
|
||
|
||
fn (x Integer) clone() Integer {
|
||
return Integer{
|
||
digits: x.digits.clone()
|
||
signum: x.signum
|
||
is_const: false
|
||
}
|
||
}
|
||
|
||
fn int_signum(value int) int {
|
||
if value == 0 {
|
||
return 0
|
||
}
|
||
return if value < 0 { -1 } else { 1 }
|
||
}
|
||
|
||
// integer_from_int creates a new `big.Integer` from the given int value.
|
||
pub fn integer_from_int(value int) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
return Integer{
|
||
digits: [u32(iabs(value))]
|
||
signum: int_signum(value)
|
||
}
|
||
}
|
||
|
||
// integer_from_u32 creates a new `big.Integer` from the given u32 value.
|
||
pub fn integer_from_u32(value u32) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
return Integer{
|
||
digits: [value]
|
||
signum: 1
|
||
}
|
||
}
|
||
|
||
// integer_from_i64 creates a new `big.Integer` from the given i64 value.
|
||
pub fn integer_from_i64(value i64) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
signum_value := if value < 0 { -1 } else { 1 }
|
||
abs_value := u64(value * signum_value)
|
||
|
||
lower := u32(abs_value)
|
||
upper := u32(abs_value >> 32)
|
||
|
||
if upper == 0 {
|
||
return Integer{
|
||
digits: [lower]
|
||
signum: signum_value
|
||
}
|
||
} else {
|
||
return Integer{
|
||
digits: [lower, upper]
|
||
signum: signum_value
|
||
}
|
||
}
|
||
}
|
||
|
||
// integer_from_u64 creates a new `big.Integer` from the given u64 value.
|
||
pub fn integer_from_u64(value u64) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
lower := u32(value & 0x00000000ffffffff)
|
||
upper := u32((value & 0xffffffff00000000) >> 32)
|
||
|
||
if upper == 0 {
|
||
return Integer{
|
||
digits: [lower]
|
||
signum: 1
|
||
}
|
||
} else {
|
||
return Integer{
|
||
digits: [lower, upper]
|
||
signum: 1
|
||
}
|
||
}
|
||
}
|
||
|
||
[params]
|
||
pub struct IntegerConfig {
|
||
signum int = 1
|
||
}
|
||
|
||
// integer_from_bytes creates a new `big.Integer` from the given byte array.
|
||
// By default, positive integers are assumed.
|
||
// If you want a negative integer, use in the following manner:
|
||
// `value := big.integer_from_bytes(bytes, signum: -1)`
|
||
[direct_array_access]
|
||
pub fn integer_from_bytes(input []u8, config IntegerConfig) Integer {
|
||
// Thank you to Miccah (@mcastorina) for this implementation and relevant unit tests.
|
||
if input.len == 0 {
|
||
return integer_from_int(0)
|
||
}
|
||
// pad input
|
||
mut padded_input := []u8{len: ((input.len + 3) & ~0x3) - input.len, cap: (input.len + 3) & ~0x3}
|
||
padded_input << input
|
||
mut digits := []u32{len: padded_input.len / 4}
|
||
// combine every 4 bytes into a u32 and insert into n.digits
|
||
for i := 0; i < padded_input.len; i += 4 {
|
||
x3 := u32(padded_input[i])
|
||
x2 := u32(padded_input[i + 1])
|
||
x1 := u32(padded_input[i + 2])
|
||
x0 := u32(padded_input[i + 3])
|
||
val := (x3 << 24) | (x2 << 16) | (x1 << 8) | x0
|
||
digits[(padded_input.len - i) / 4 - 1] = val
|
||
}
|
||
return Integer{
|
||
digits: digits
|
||
signum: config.signum
|
||
}
|
||
}
|
||
|
||
// integer_from_string creates a new `big.Integer` from the decimal digits specified in the given string.
|
||
// For other bases, use `big.integer_from_radix` instead.
|
||
pub fn integer_from_string(characters string) !Integer {
|
||
return integer_from_radix(characters, 10)
|
||
}
|
||
|
||
// integer_from_radix creates a new `big.Integer` from the given string and radix.
|
||
pub fn integer_from_radix(all_characters string, radix u32) !Integer {
|
||
if radix < 2 || radix > 36 {
|
||
return error('Radix must be between 2 and 36 (inclusive)')
|
||
}
|
||
characters := all_characters.to_lower()
|
||
validate_string(characters, radix)!
|
||
return match radix {
|
||
2 {
|
||
integer_from_special_string(characters, 1)
|
||
}
|
||
16 {
|
||
integer_from_special_string(characters, 4)
|
||
}
|
||
else {
|
||
integer_from_regular_string(characters, radix)
|
||
}
|
||
}
|
||
}
|
||
|
||
[direct_array_access]
|
||
fn validate_string(characters string, radix u32) ! {
|
||
sign_present := characters[0] == `+` || characters[0] == `-`
|
||
|
||
start_index := if sign_present { 1 } else { 0 }
|
||
|
||
for index := start_index; index < characters.len; index++ {
|
||
digit := characters[index]
|
||
value := big.digit_array.index(digit)
|
||
|
||
if value == -1 {
|
||
return error('Invalid character ${digit}')
|
||
}
|
||
if value >= radix {
|
||
return error('Invalid character ${digit} for base ${radix}')
|
||
}
|
||
}
|
||
}
|
||
|
||
[direct_array_access]
|
||
fn integer_from_special_string(characters string, chunk_size int) Integer {
|
||
sign_present := characters[0] == `+` || characters[0] == `-`
|
||
|
||
signum := if sign_present {
|
||
if characters[0] == `-` { -1 } else { 1 }
|
||
} else {
|
||
1
|
||
}
|
||
|
||
start_index := if sign_present { 1 } else { 0 }
|
||
|
||
mut big_digits := []u32{cap: ((characters.len * chunk_size) >> 5) + 1}
|
||
mut current := u32(0)
|
||
mut offset := 0
|
||
for index := characters.len - 1; index >= start_index; index-- {
|
||
digit := characters[index]
|
||
value := u32(big.digit_array.index(digit))
|
||
|
||
current |= value << offset
|
||
offset += chunk_size
|
||
|
||
if offset == 32 {
|
||
big_digits << current
|
||
current = u32(0)
|
||
offset = 0
|
||
}
|
||
}
|
||
|
||
// Store the accumulated value into the digit array
|
||
if current != 0 {
|
||
big_digits << current
|
||
}
|
||
|
||
shrink_tail_zeros(mut big_digits)
|
||
|
||
return Integer{
|
||
digits: big_digits
|
||
signum: if big_digits.len == 0 { 0 } else { signum }
|
||
}
|
||
}
|
||
|
||
[direct_array_access]
|
||
fn integer_from_regular_string(characters string, radix u32) Integer {
|
||
sign_present := characters[0] == `+` || characters[0] == `-`
|
||
|
||
signum := if sign_present {
|
||
if characters[0] == `-` { -1 } else { 1 }
|
||
} else {
|
||
1
|
||
}
|
||
|
||
start_index := if sign_present { 1 } else { 0 }
|
||
|
||
mut result := zero_int
|
||
radix_int := integer_from_u32(radix)
|
||
|
||
for index := start_index; index < characters.len; index++ {
|
||
digit := characters[index]
|
||
value := big.digit_array.index(digit)
|
||
|
||
result *= radix_int
|
||
result += integer_from_int(value)
|
||
}
|
||
|
||
return Integer{
|
||
digits: result.digits.clone()
|
||
signum: result.signum * signum
|
||
}
|
||
}
|
||
|
||
// abs returns the absolute value of the integer.
|
||
pub fn (integer Integer) abs() Integer {
|
||
return if integer.signum == 0 {
|
||
zero_int
|
||
} else {
|
||
Integer{
|
||
digits: integer.digits.clone()
|
||
signum: 1
|
||
}
|
||
}
|
||
}
|
||
|
||
// neg returns the result of negation of the integer.
|
||
pub fn (integer Integer) neg() Integer {
|
||
return if integer.signum == 0 {
|
||
zero_int
|
||
} else {
|
||
Integer{
|
||
digits: integer.digits.clone()
|
||
signum: -integer.signum
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn (integer Integer) + (addend Integer) Integer {
|
||
// Quick exits
|
||
if integer.signum == 0 {
|
||
return addend.clone()
|
||
}
|
||
if addend.signum == 0 {
|
||
return integer.clone()
|
||
}
|
||
// Non-zero cases
|
||
return if integer.signum == addend.signum {
|
||
integer.add(addend)
|
||
} else { // Unequal signs
|
||
integer.subtract(addend)
|
||
}
|
||
}
|
||
|
||
pub fn (integer Integer) - (subtrahend Integer) Integer {
|
||
// Quick exits
|
||
if integer.signum == 0 {
|
||
return subtrahend.neg()
|
||
}
|
||
if subtrahend.signum == 0 {
|
||
return integer.clone()
|
||
}
|
||
// Non-zero cases
|
||
return if integer.signum == subtrahend.signum {
|
||
integer.subtract(subtrahend)
|
||
} else {
|
||
integer.add(subtrahend)
|
||
}
|
||
}
|
||
|
||
fn (integer Integer) add(addend Integer) Integer {
|
||
a := integer.digits
|
||
b := addend.digits
|
||
mut storage := []u32{len: imax(a.len, b.len) + 1}
|
||
add_digit_array(a, b, mut storage)
|
||
return Integer{
|
||
signum: integer.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
fn (integer Integer) subtract(subtrahend Integer) Integer {
|
||
cmp := integer.abs_cmp(subtrahend)
|
||
if cmp == 0 {
|
||
return zero_int
|
||
}
|
||
a, b := if cmp > 0 { integer, subtrahend } else { subtrahend, integer }
|
||
mut storage := []u32{len: a.digits.len}
|
||
subtract_digit_array(a.digits, b.digits, mut storage)
|
||
return Integer{
|
||
signum: cmp * a.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
pub fn (integer Integer) * (multiplicand Integer) Integer {
|
||
// Quick exits
|
||
if integer.signum == 0 || multiplicand.signum == 0 {
|
||
return zero_int
|
||
}
|
||
if integer == one_int {
|
||
return multiplicand.clone()
|
||
}
|
||
if multiplicand == one_int {
|
||
return integer.clone()
|
||
}
|
||
// The final sign is the product of the signs
|
||
mut storage := []u32{len: integer.digits.len + multiplicand.digits.len}
|
||
multiply_digit_array(integer.digits, multiplicand.digits, mut storage)
|
||
return Integer{
|
||
signum: integer.signum * multiplicand.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
// div_mod returns the quotient and remainder of the integer division.
|
||
pub fn (integer Integer) div_mod(divisor Integer) (Integer, Integer) {
|
||
// Quick exits
|
||
if divisor.signum == 0 {
|
||
panic('Cannot divide by zero')
|
||
}
|
||
if integer.signum == 0 {
|
||
return zero_int, zero_int
|
||
}
|
||
if divisor == one_int {
|
||
return integer.clone(), zero_int
|
||
}
|
||
if divisor.signum == -1 {
|
||
q, r := integer.div_mod(divisor.neg())
|
||
return q.neg(), r
|
||
}
|
||
if integer.signum == -1 {
|
||
q, r := integer.neg().div_mod(divisor)
|
||
if r.signum == 0 {
|
||
return q.neg(), zero_int
|
||
} else {
|
||
return q.neg() - one_int, divisor - r
|
||
}
|
||
}
|
||
// Division for positive integers
|
||
mut q := []u32{cap: integer.digits.len - divisor.digits.len + 1}
|
||
mut r := []u32{cap: integer.digits.len}
|
||
divide_digit_array(integer.digits, divisor.digits, mut q, mut r)
|
||
quotient := Integer{
|
||
signum: if q.len == 0 { 0 } else { 1 }
|
||
digits: q
|
||
}
|
||
remainder := Integer{
|
||
signum: if r.len == 0 { 0 } else { 1 }
|
||
digits: r
|
||
}
|
||
return quotient, remainder
|
||
}
|
||
|
||
pub fn (a Integer) / (b Integer) Integer {
|
||
q, _ := a.div_mod(b)
|
||
return q
|
||
}
|
||
|
||
pub fn (a Integer) % (b Integer) Integer {
|
||
_, r := a.div_mod(b)
|
||
return r
|
||
}
|
||
|
||
// mask_bits is the equivalent of `a % 2^n` (only when `a >= 0`), however doing a full division
|
||
// run for this would be a lot of work when we can simply "cut off" all bits to the left of
|
||
// the `n`th bit.
|
||
[direct_array_access]
|
||
fn (a Integer) mask_bits(n u32) Integer {
|
||
$if debug {
|
||
assert a.signum >= 0
|
||
}
|
||
|
||
if a.digits.len == 0 || n == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
w := n / 32
|
||
b := n % 32
|
||
|
||
if w >= a.digits.len {
|
||
return a
|
||
}
|
||
|
||
return Integer{
|
||
digits: if b == 0 {
|
||
mut storage := []u32{len: int(w)}
|
||
for i := 0; i < storage.len; i++ {
|
||
storage[i] = a.digits[i]
|
||
}
|
||
storage
|
||
} else {
|
||
mut storage := []u32{len: int(w) + 1}
|
||
for i := 0; i < storage.len; i++ {
|
||
storage[i] = a.digits[i]
|
||
}
|
||
storage[w] &= ~(u32(-1) << b)
|
||
storage
|
||
}
|
||
signum: 1
|
||
}
|
||
}
|
||
|
||
// pow returns the integer `a` raised to the power of the u32 `exponent`.
|
||
pub fn (base Integer) pow(exponent u32) Integer {
|
||
if exponent == 0 {
|
||
return one_int
|
||
}
|
||
if exponent == 1 {
|
||
return base.clone()
|
||
}
|
||
mut n := exponent
|
||
mut x := base
|
||
mut y := one_int
|
||
for n > 1 {
|
||
if n & 1 == 1 {
|
||
y *= x
|
||
}
|
||
x *= x
|
||
n >>= 1
|
||
}
|
||
return x * y
|
||
}
|
||
|
||
// mod_pow returns the integer `a` raised to the power of the u32 `exponent` modulo the integer `modulus`.
|
||
pub fn (base Integer) mod_pow(exponent u32, modulus Integer) Integer {
|
||
if exponent == 0 {
|
||
return one_int
|
||
}
|
||
if exponent == 1 {
|
||
return base % modulus
|
||
}
|
||
mut n := exponent
|
||
mut x := base % modulus
|
||
mut y := one_int
|
||
for n > 1 {
|
||
if n & 1 == 1 {
|
||
y *= x % modulus
|
||
}
|
||
x *= x % modulus
|
||
n >>= 1
|
||
}
|
||
return x * y % modulus
|
||
}
|
||
|
||
// big_mod_pow returns the integer `base` raised to the power of the integer `exponent` modulo the integer `modulus`.
|
||
[direct_array_access]
|
||
pub fn (base Integer) big_mod_pow(exponent Integer, modulus Integer) !Integer {
|
||
if exponent.signum < 0 {
|
||
return error('math.big: Exponent needs to be non-negative.')
|
||
}
|
||
|
||
// this goes first as otherwise 1 could be returned incorrectly if base == 1
|
||
if modulus.bit_len() <= 1 {
|
||
return zero_int
|
||
}
|
||
|
||
// x^0 == 1 || 1^x == 1
|
||
if exponent.signum == 0 || base.bit_len() == 1 {
|
||
return one_int
|
||
}
|
||
|
||
// 0^x == 0 (x != 0 due to previous clause)
|
||
if base.signum == 0 {
|
||
return one_int
|
||
}
|
||
|
||
if exponent.bit_len() == 1 {
|
||
// x^1 without mod == x
|
||
if modulus.signum == 0 {
|
||
return base
|
||
}
|
||
// x^1 (mod m) === x % m
|
||
return base % modulus
|
||
}
|
||
|
||
// the amount of precomputation in windowed exponentiation (done in the montgomery and binary
|
||
// windowed exponentiation algorithms) is far too costly for small sized exponents, so
|
||
// we redirect the call to mod_pow
|
||
return if exponent.digits.len > 1 {
|
||
if modulus.is_odd() {
|
||
// modulus is odd, therefore we use the normal
|
||
// montgomery modular exponentiation algorithm
|
||
base.mont_odd(exponent, modulus)
|
||
} else if modulus.is_power_of_2() {
|
||
base.exp_binary(exponent, modulus)
|
||
} else {
|
||
base.mont_even(exponent, modulus)
|
||
}
|
||
} else {
|
||
base.mod_pow(exponent.digits[0], modulus)
|
||
}
|
||
}
|
||
|
||
// inc returns the integer `a` incremented by 1.
|
||
pub fn (mut a Integer) inc() {
|
||
a = a + one_int
|
||
}
|
||
|
||
// dec returns the integer `a` decremented by 1.
|
||
pub fn (mut a Integer) dec() {
|
||
a = a - one_int
|
||
}
|
||
|
||
pub fn (a Integer) == (b Integer) bool {
|
||
return a.signum == b.signum && a.digits.len == b.digits.len && a.digits == b.digits
|
||
}
|
||
|
||
// abs_cmp returns the result of comparing the magnitudes of the integers `a` and `b`.
|
||
// It returns a negative int if `|a| < |b|`, 0 if `|a| == |b|`, and a positive int if `|a| > |b|`.
|
||
pub fn (a Integer) abs_cmp(b Integer) int {
|
||
return compare_digit_array(a.digits, b.digits)
|
||
}
|
||
|
||
pub fn (a Integer) < (b Integer) bool {
|
||
// Quick exits based on signum value:
|
||
if a.signum < b.signum {
|
||
return true
|
||
}
|
||
if a.signum > b.signum {
|
||
return false
|
||
}
|
||
// They have equal sign
|
||
signum := a.signum
|
||
if signum == 0 { // Are they both zero?
|
||
return false
|
||
}
|
||
// If they are negative, the one with the larger absolute value is smaller
|
||
cmp := a.abs_cmp(b)
|
||
return if signum < 0 { cmp > 0 } else { cmp < 0 }
|
||
}
|
||
|
||
fn check_sign(a Integer) {
|
||
if a.signum < 0 {
|
||
panic('Bitwise operations are only supported for nonnegative integers')
|
||
}
|
||
}
|
||
|
||
// get_bit checks whether the bit at the given index is set.
|
||
[direct_array_access]
|
||
pub fn (a Integer) get_bit(i u32) bool {
|
||
check_sign(a)
|
||
target_index := i / 32
|
||
offset := i % 32
|
||
if target_index >= a.digits.len {
|
||
return false
|
||
}
|
||
return (a.digits[target_index] >> offset) & 1 != 0
|
||
}
|
||
|
||
// set_bit sets the bit at the given index to the given value.
|
||
pub fn (mut a Integer) set_bit(i u32, value bool) {
|
||
check_sign(a)
|
||
target_index := i / 32
|
||
offset := i % 32
|
||
|
||
if target_index >= a.digits.len {
|
||
if value {
|
||
a = one_int.lshift(i).bitwise_or(a)
|
||
}
|
||
return
|
||
}
|
||
|
||
mut copy := a.digits.clone()
|
||
|
||
if value {
|
||
copy[target_index] |= 1 << offset
|
||
} else {
|
||
copy[target_index] &= ~(1 << offset)
|
||
}
|
||
|
||
a = Integer{
|
||
signum: a.signum
|
||
digits: copy
|
||
}
|
||
}
|
||
|
||
// bitwise_or returns the "bitwise or" of the integers `a` and `b`.
|
||
pub fn (a Integer) bitwise_or(b Integer) Integer {
|
||
check_sign(a)
|
||
check_sign(b)
|
||
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_or_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_and returns the "bitwise and" of the integers `a` and `b`.
|
||
pub fn (a Integer) bitwise_and(b Integer) Integer {
|
||
check_sign(a)
|
||
check_sign(b)
|
||
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_and_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_not returns the "bitwise not" of the integer `a`.
|
||
pub fn (a Integer) bitwise_not() Integer {
|
||
check_sign(a)
|
||
mut result := []u32{len: a.digits.len}
|
||
bitwise_not_digit_array(a.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_xor returns the "bitwise exclusive or" of the integers `a` and `b`.
|
||
pub fn (a Integer) bitwise_xor(b Integer) Integer {
|
||
check_sign(a)
|
||
check_sign(b)
|
||
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_xor_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// lshift returns the integer `a` shifted left by `amount` bits.
|
||
[direct_array_access]
|
||
pub fn (a Integer) lshift(amount u32) Integer {
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if amount == 0 {
|
||
return a
|
||
}
|
||
normalised_amount := amount & 31
|
||
digit_offset := int(amount >> 5)
|
||
mut new_array := []u32{len: a.digits.len + digit_offset}
|
||
for index in 0 .. a.digits.len {
|
||
new_array[index + digit_offset] = a.digits[index]
|
||
}
|
||
if normalised_amount > 0 {
|
||
shift_digits_left(new_array, normalised_amount, mut new_array)
|
||
}
|
||
return Integer{
|
||
digits: new_array
|
||
signum: a.signum
|
||
}
|
||
}
|
||
|
||
// rshift returns the integer `a` shifted right by `amount` bits.
|
||
[direct_array_access]
|
||
pub fn (a Integer) rshift(amount u32) Integer {
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if amount == 0 {
|
||
return a
|
||
}
|
||
normalised_amount := amount & 31
|
||
digit_offset := int(amount >> 5)
|
||
if digit_offset >= a.digits.len {
|
||
return zero_int
|
||
}
|
||
mut new_array := []u32{len: a.digits.len - digit_offset}
|
||
for index in 0 .. new_array.len {
|
||
new_array[index] = a.digits[index + digit_offset]
|
||
}
|
||
if normalised_amount > 0 {
|
||
shift_digits_right(new_array, normalised_amount, mut new_array)
|
||
}
|
||
return Integer{
|
||
digits: new_array
|
||
signum: a.signum
|
||
}
|
||
}
|
||
|
||
// binary_str returns the binary string representation of the integer `a`.
|
||
[direct_array_access]
|
||
pub fn (integer Integer) binary_str() string {
|
||
// We have the zero integer
|
||
if integer.signum == 0 {
|
||
return '0'
|
||
}
|
||
// Add the sign if present
|
||
sign_needed := integer.signum == -1
|
||
mut result_builder := strings.new_builder(integer.bit_len() + if sign_needed { 1 } else { 0 })
|
||
if sign_needed {
|
||
result_builder.write_string('-')
|
||
}
|
||
|
||
result_builder.write_string(u32_to_binary_without_lz(integer.digits[integer.digits.len - 1]))
|
||
|
||
for index := integer.digits.len - 2; index >= 0; index-- {
|
||
result_builder.write_string(u32_to_binary_with_lz(integer.digits[index]))
|
||
}
|
||
return result_builder.str()
|
||
}
|
||
|
||
// hex returns the hexadecimal string representation of the integer `a`.
|
||
[direct_array_access]
|
||
pub fn (integer Integer) hex() string {
|
||
// We have the zero integer
|
||
if integer.signum == 0 {
|
||
return '0'
|
||
}
|
||
// Add the sign if present
|
||
sign_needed := integer.signum == -1
|
||
mut result_builder := strings.new_builder(integer.digits.len * 8 +
|
||
if sign_needed { 1 } else { 0 })
|
||
if sign_needed {
|
||
result_builder.write_string('-')
|
||
}
|
||
|
||
result_builder.write_string(u32_to_hex_without_lz(integer.digits[integer.digits.len - 1]))
|
||
|
||
for index := integer.digits.len - 2; index >= 0; index-- {
|
||
result_builder.write_string(u32_to_hex_with_lz(integer.digits[index]))
|
||
}
|
||
return result_builder.str()
|
||
}
|
||
|
||
// radix_str returns the string representation of the integer `a` in the specified radix.
|
||
pub fn (integer Integer) radix_str(radix u32) string {
|
||
if integer.signum == 0 {
|
||
return '0'
|
||
}
|
||
return match radix {
|
||
2 {
|
||
integer.binary_str()
|
||
}
|
||
16 {
|
||
integer.hex()
|
||
}
|
||
else {
|
||
integer.general_radix_str(radix)
|
||
}
|
||
}
|
||
}
|
||
|
||
fn (integer Integer) general_radix_str(radix u32) string {
|
||
divisor := integer_from_u32(radix)
|
||
|
||
mut current := integer.abs()
|
||
mut new_current := zero_int
|
||
mut digit := zero_int
|
||
mut rune_array := []rune{cap: current.digits.len * 4}
|
||
for current.signum > 0 {
|
||
new_current, digit = current.div_mod(divisor)
|
||
rune_array << big.digit_array[digit.int()]
|
||
unsafe { digit.free() }
|
||
unsafe { current.free() }
|
||
current = new_current
|
||
}
|
||
if integer.signum == -1 {
|
||
rune_array << `-`
|
||
}
|
||
|
||
rune_array.reverse_in_place()
|
||
return rune_array.string()
|
||
}
|
||
|
||
// str returns the decimal string representation of the integer `a`.
|
||
pub fn (integer Integer) str() string {
|
||
return integer.radix_str(10)
|
||
}
|
||
|
||
fn u32_to_binary_without_lz(value u32) string {
|
||
return strconv.format_uint(value, 2)
|
||
}
|
||
|
||
fn u32_to_binary_with_lz(value u32) string {
|
||
mut result_builder := strings.new_builder(32)
|
||
binary_result := strconv.format_uint(value, 2)
|
||
|
||
result_builder.write_string(strings.repeat(`0`, 32 - binary_result.len))
|
||
result_builder.write_string(binary_result)
|
||
|
||
return result_builder.str()
|
||
}
|
||
|
||
fn u32_to_hex_without_lz(value u32) string {
|
||
return strconv.format_uint(value, 16)
|
||
}
|
||
|
||
fn u32_to_hex_with_lz(value u32) string {
|
||
mut result_builder := strings.new_builder(8)
|
||
hex_result := strconv.format_uint(value, 16)
|
||
|
||
result_builder.write_string(strings.repeat(`0`, 8 - hex_result.len))
|
||
result_builder.write_string(hex_result)
|
||
|
||
return result_builder.str()
|
||
}
|
||
|
||
// int returns the integer value of the integer `a`.
|
||
// NOTE: This may cause loss of precision.
|
||
pub fn (a Integer) int() int {
|
||
if a.signum == 0 {
|
||
return 0
|
||
}
|
||
// Check for minimum value int
|
||
if a.digits[0] == 2147483648 && a.signum == -1 {
|
||
return -2147483648
|
||
}
|
||
// Rest of the values should be fine
|
||
value := int(a.digits[0] & 0x7fffffff)
|
||
return value * a.signum
|
||
}
|
||
|
||
// bytes returns the a byte representation of the integer a, along with the signum int.
|
||
// NOTE: The byte array returned is in big endian order.
|
||
[direct_array_access]
|
||
pub fn (a Integer) bytes() ([]u8, int) {
|
||
if a.signum == 0 {
|
||
return []u8{len: 0}, 0
|
||
}
|
||
mut result := []u8{cap: a.digits.len * 4}
|
||
mut mask := u32(0xff000000)
|
||
mut offset := 24
|
||
mut non_zero_found := false
|
||
for index := a.digits.len - 1; index >= 0; {
|
||
value := u8((a.digits[index] & mask) >> offset)
|
||
non_zero_found = non_zero_found || value != 0
|
||
if non_zero_found {
|
||
result << value
|
||
}
|
||
mask >>= 8
|
||
offset -= 8
|
||
if offset < 0 {
|
||
mask = u32(0xff000000)
|
||
offset = 24
|
||
index--
|
||
}
|
||
}
|
||
return result, a.signum
|
||
}
|
||
|
||
// factorial returns the factorial of the integer `a`.
|
||
pub fn (a Integer) factorial() Integer {
|
||
if a.signum == 0 {
|
||
return one_int
|
||
}
|
||
mut product := one_int
|
||
mut current := a
|
||
for current.signum != 0 {
|
||
product *= current
|
||
current.dec()
|
||
}
|
||
return product
|
||
}
|
||
|
||
// isqrt returns the closest integer square root of the given integer.
|
||
pub fn (a Integer) isqrt() Integer {
|
||
if a.signum < 0 {
|
||
panic('Cannot obtain square root of negative integer')
|
||
}
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if a.digits.len == 1 && a.digits.last() == 1 {
|
||
return a
|
||
}
|
||
|
||
mut shift := a.bit_len()
|
||
if shift & 1 == 1 {
|
||
shift += 1
|
||
}
|
||
mut result := zero_int
|
||
for shift >= 0 {
|
||
result = result.lshift(1)
|
||
larger := result + one_int
|
||
if (larger * larger).abs_cmp(a.rshift(u32(shift))) <= 0 {
|
||
result = larger
|
||
}
|
||
shift -= 2
|
||
}
|
||
return result
|
||
}
|
||
|
||
[inline]
|
||
fn bi_min(a Integer, b Integer) Integer {
|
||
return if a < b { a } else { b }
|
||
}
|
||
|
||
[inline]
|
||
fn bi_max(a Integer, b Integer) Integer {
|
||
return if a > b { a } else { b }
|
||
}
|
||
|
||
[direct_array_access]
|
||
fn (bi Integer) msb() u32 {
|
||
for idx := 0; idx < bi.digits.len; idx += 1 {
|
||
word := bi.digits[idx]
|
||
if word > 0 {
|
||
return u32((idx * 32) + bits.trailing_zeros_32(word))
|
||
}
|
||
}
|
||
return u32(32)
|
||
}
|
||
|
||
// gcd returns the greatest common divisor of the two integers `a` and `b`.
|
||
pub fn (a Integer) gcd(b Integer) Integer {
|
||
if a.signum == 0 {
|
||
return b.abs()
|
||
}
|
||
if b.signum == 0 {
|
||
return a.abs()
|
||
}
|
||
if a.signum < 0 {
|
||
return a.neg().gcd(b)
|
||
}
|
||
if b.signum < 0 {
|
||
return a.gcd(b.neg())
|
||
}
|
||
|
||
if a.digits.len + b.digits.len <= 2 {
|
||
return gcd_euclid(a, b)
|
||
} else {
|
||
return gcd_binary(a, b)
|
||
}
|
||
}
|
||
|
||
fn gcd_euclid(x Integer, y Integer) Integer {
|
||
mut a := x
|
||
mut b := y
|
||
mut r := a % b
|
||
for r.signum != 0 {
|
||
a = b
|
||
b = r
|
||
r = a % b
|
||
}
|
||
return b
|
||
}
|
||
|
||
// Inspired by the 2013-christmas-special by D. Lemire & R. Corderoy https://en.algorithmica.org/hpc/analyzing-performance/gcd/
|
||
// For more information, refer to the Wikipedia article: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
||
// Discussion and further information: https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
|
||
fn gcd_binary(x Integer, y Integer) Integer {
|
||
mut a := x
|
||
mut b := y
|
||
|
||
mut az := a.msb()
|
||
bz := b.msb()
|
||
shift := umin(az, bz)
|
||
b = b.rshift(bz)
|
||
|
||
for a.signum != 0 {
|
||
a = a.rshift(az)
|
||
diff := b - a
|
||
az = diff.msb()
|
||
b = bi_min(a, b)
|
||
a = diff.abs()
|
||
}
|
||
return b.lshift(shift)
|
||
}
|
||
|
||
// mod_inverse calculates the multiplicative inverse of the integer `a` in the ring `ℤ/nℤ`.
|
||
// Therefore, the return value `x` satisfies `a * x == 1 (mod m)`.
|
||
// An error is returned if `a` and `n` are not relatively prime, i.e. `gcd(a, n) != 1` or
|
||
// if n <= 1
|
||
[inline]
|
||
pub fn (a Integer) mod_inverse(n Integer) !Integer {
|
||
return if n.bit_len() <= 1 {
|
||
error('math.big: Modulus `n` must be greater than 1')
|
||
} else if a.gcd(n) != one_int {
|
||
error('math.big: No multiplicative inverse')
|
||
} else {
|
||
a.mod_inv(n)
|
||
}
|
||
}
|
||
|
||
// this is an internal function, therefore we assume valid inputs,
|
||
// i.e. m > 1 and gcd(a, m) = 1
|
||
// see pub fn mod_inverse for details on the result
|
||
// -----
|
||
// the algorithm is based on the Extended Euclidean algorithm which computes `ax + by = d`
|
||
// in this case `b` is the input integer `a` and `a` is the input modulus `m`. The extended
|
||
// Euclidean algorithm calculates the greatest common divisor `d` and two coefficients `x` and `y`
|
||
// satisfying the above equality.
|
||
//
|
||
// For the sake of clarity, we refer to the input integer `a` as `b` and the integer `m` as `a`.
|
||
// If `gcd(a, b) = d = 1` then the coefficient `y` is known to be the multiplicative inverse of
|
||
// `b` in ring `Z/aZ`, since reducing `ax + by = 1` by `a` yields `by == 1 (mod a)`.
|
||
[direct_array_access]
|
||
fn (a Integer) mod_inv(m Integer) Integer {
|
||
mut n := Integer{
|
||
digits: m.digits.clone()
|
||
signum: 1
|
||
}
|
||
mut b := a
|
||
mut x := one_int
|
||
mut y := zero_int
|
||
if b.signum < 0 || b.abs_cmp(n) >= 0 {
|
||
b = b % n
|
||
}
|
||
mut sign := -1
|
||
|
||
for b != zero_int {
|
||
q, r := if n.bit_len() == b.bit_len() {
|
||
one_int, n - b
|
||
} else {
|
||
n.div_mod(b)
|
||
}
|
||
|
||
n = b
|
||
b = r
|
||
|
||
// tmp := q * x + y
|
||
tmp := if q == one_int {
|
||
x
|
||
} else if q.digits.len == 1 && q.digits[0] & (q.digits[0] - 1) == 0 {
|
||
x.lshift(u32(bits.trailing_zeros_32(q.digits[0])))
|
||
} else {
|
||
q * x
|
||
} + y
|
||
|
||
y = x
|
||
x = tmp
|
||
sign = -sign
|
||
}
|
||
|
||
if sign < 0 {
|
||
y = m - y
|
||
}
|
||
|
||
$if debug {
|
||
assert n == one_int
|
||
}
|
||
|
||
return if y.signum > 0 && y.abs_cmp(m) < 0 {
|
||
y
|
||
} else {
|
||
y % m
|
||
}
|
||
}
|
||
|
||
[direct_array_access; inline]
|
||
fn (x Integer) is_odd() bool {
|
||
return x.digits[0] & 1 == 1
|
||
}
|
||
|
||
// is_power_of_2 returns true when the integer `x` satisfies `2^n`, where `n >= 0`
|
||
[inline]
|
||
pub fn (x Integer) is_power_of_2() bool {
|
||
return x.bitwise_and(x - one_int).bit_len() == 0
|
||
}
|
||
|
||
// bit_len returns the number of bits required to represent the integer `a`.
|
||
[inline]
|
||
pub fn (x Integer) bit_len() int {
|
||
if x.signum == 0 {
|
||
return 0
|
||
}
|
||
if x.digits.len == 0 {
|
||
return 0
|
||
}
|
||
return x.digits.len * 32 - bits.leading_zeros_32(x.digits.last())
|
||
}
|