1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/arrays/arrays.v

667 lines
17 KiB
V

module arrays
// Common arrays functions:
// - min / max - return the value of the minumum / maximum
// - idx_min / idx_max - return the index of the first minumum / maximum
// - merge - combine two sorted arrays and maintain sorted order
// - chunk - chunk array to arrays with n elements
// - window - get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array
// - group - merge two arrays by interleaving e.g. arrays.group([1,3,5], [2,4,6]) => [[1,2],[3,4],[5,6]]
// - flatten - reduce dimensionality of array by one. e.g. arrays.flatten([[1,2],[3,4],[5,6]]) => [1,2,3,4,5,6]
// min returns the minimum value in the array
// Example: arrays.min([1, 2, 3, 0, 9])! // => 0
pub fn min[T](array []T) !T {
if array.len == 0 {
return error('.min called on an empty array')
}
mut val := array[0]
for e in array {
if e < val {
val = e
}
}
return val
}
// max returns the maximum value in the array
// Example: arrays.max([1, 2, 3, 0, 9])! // => 9
pub fn max[T](array []T) !T {
if array.len == 0 {
return error('.max called on an empty array')
}
mut val := array[0]
for e in array {
if e > val {
val = e
}
}
return val
}
// idx_min returns the index of the minimum value in the array
// Example: arrays.idx_min([1, 2, 3, 0, 9])! // => 3
pub fn idx_min[T](array []T) !int {
if array.len == 0 {
return error('.idx_min called on an empty array')
}
mut idx := 0
mut val := array[0]
for i, e in array {
if e < val {
val = e
idx = i
}
}
return idx
}
// idx_max returns the index of the maximum value in the array
// Example: arrays.idx_max([1, 2, 3, 0, 9])! // => 4
pub fn idx_max[T](array []T) !int {
if array.len == 0 {
return error('.idx_max called on an empty array')
}
mut idx := 0
mut val := array[0]
for i, e in array {
if e > val {
val = e
idx = i
}
}
return idx
}
// merge two sorted arrays (ascending) and maintain sorted order
// Example: arrays.merge([1, 3, 5, 7], [2, 4, 6, 8]) // => [1, 2, 3, 4, 5, 6, 7, 8]
[direct_array_access]
pub fn merge[T](a []T, b []T) []T {
mut m := []T{len: a.len + b.len}
mut ia := 0
mut ib := 0
mut j := 0
// TODO efficient approach to merge_desc where: a[ia] >= b[ib]
for ia < a.len && ib < b.len {
if a[ia] <= b[ib] {
m[j] = a[ia]
ia++
} else {
m[j] = b[ib]
ib++
}
j++
}
// a leftovers
for ia < a.len {
m[j] = a[ia]
ia++
j++
}
// b leftovers
for ib < b.len {
m[j] = b[ib]
ib++
j++
}
return m
}
// group n arrays into a single array of arrays with n elements
//
// This function is analogous to the "zip" function of other languages.
// To fully interleave two arrays, follow this function with a call to `flatten`.
//
// NOTE: An error will be generated if the type annotation is omitted.
// Example: arrays.group[int]([1, 2, 3], [4, 5, 6]) // => [[1, 4], [2, 5], [3, 6]]
pub fn group[T](arrays ...[]T) [][]T {
mut length := if arrays.len > 0 { arrays[0].len } else { 0 }
// calculate length of output by finding shortest input array
for ndx in 1 .. arrays.len {
if arrays[ndx].len < length {
length = arrays[ndx].len
}
}
if length > 0 {
mut arr := [][]T{cap: length}
// append all combined arrays into the resultant array
for ndx in 0 .. length {
mut grouped := []T{cap: arrays.len}
// combine each list item for the ndx position into one array
for arr_ndx in 0 .. arrays.len {
grouped << arrays[arr_ndx][ndx]
}
arr << grouped
}
return arr
}
return [][]T{}
}
// chunk array into a single array of arrays where each element is the next `size` elements of the original
// Example: arrays.chunk([1, 2, 3, 4, 5, 6, 7, 8, 9], 2)) // => [[1, 2], [3, 4], [5, 6], [7, 8], [9]]
pub fn chunk[T](array []T, size int) [][]T {
// allocate chunk array
mut chunks := [][]T{cap: array.len / size + if array.len % size == 0 { 0 } else { 1 }}
for i := 0; true; {
// check chunk size is greater than remaining element size
if array.len < i + size {
// check if there's no more element to chunk
if array.len <= i {
break
}
chunks << array[i..]
break
}
chunks << array[i..i + size]
i += size
}
return chunks
}
pub struct WindowAttribute {
size int
step int = 1
}
// get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array.
// - `size` - snapshot size
// - `step` - gap size between each snapshot, default is 1.
//
// Example: arrays.window([1, 2, 3, 4], size: 2) // => [[1, 2], [2, 3], [3, 4]]
// Example: arrays.window([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size: 3, step: 2) // => [[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]]
pub fn window[T](array []T, attr WindowAttribute) [][]T {
// allocate snapshot array
mut windows := [][]T{cap: array.len - attr.size + 1}
for i := 0; true; {
// check remaining elements size is less than snapshot size
if array.len < i + attr.size {
break
}
windows << array[i..i + attr.size]
i += attr.step
}
return windows
}
// sum up array, return nothing when array has no elements
//
// NOTICE: currently V has bug that cannot make sum function takes custom struct with + operator overloaded
// which means you can only pass array of numbers for now.
// TODO: Fix generic operator overloading detection issue.
// Example: arrays.sum[int]([1, 2, 3, 4, 5])! // => 15
pub fn sum[T](array []T) !T {
if array.len == 0 {
return error('Cannot sum up array of nothing.')
} else {
mut head := array[0]
for i, e in array {
if i == 0 {
continue
} else {
head += e
}
}
return head
}
}
// reduce sets `acc = array[0]`, then successively calls `acc = reduce_op(acc, elem)` for each remaining element in `array`.
// returns the accumulated value in `acc`.
// returns an error if the array is empty.
// See also: [fold](#fold).
// Example: arrays.reduce([1, 2, 3, 4, 5], fn (t1 int, t2 int) int { return t1 * t2 })! // => 120
pub fn reduce[T](array []T, reduce_op fn (acc T, elem T) T) !T {
if array.len == 0 {
return error('Cannot reduce array of nothing.')
} else {
mut value := array[0]
for i, e in array {
if i == 0 {
continue
} else {
value = reduce_op(value, e)
}
}
return value
}
}
// reduce_indexed sets `acc = array[0]`, then successively calls `acc = reduce_op(idx, acc, elem)` for each remaining element in `array`.
// returns the accumulated value in `acc`.
// returns an error if the array is empty.
// See also: [fold_indexed](#fold_indexed).
pub fn reduce_indexed[T](array []T, reduce_op fn (idx int, acc T, elem T) T) !T {
if array.len == 0 {
return error('Cannot reduce array of nothing.')
} else {
mut value := array[0]
for i, e in array {
if i == 0 {
continue
} else {
value = reduce_op(i, value, e)
}
}
return value
}
}
// filter_indexed filters elements based on `predicate` function
// being invoked on each element with its index in the original array.
pub fn filter_indexed[T](array []T, predicate fn (idx int, elem T) bool) []T {
mut result := []T{cap: array.len}
for i, e in array {
if predicate(i, e) {
result << e
}
}
return result
}
// fold sets `acc = init`, then successively calls `acc = fold_op(acc, elem)` for each element in `array`.
// returns `acc`.
// Example:
// ```v
// // Sum the length of each string in an array
// a := ['Hi', 'all']
// r := arrays.fold[string, int](a, 0,
// fn (r int, t string) int { return r + t.len })
// assert r == 5
// ```
pub fn fold[T, R](array []T, init R, fold_op fn (acc R, elem T) R) R {
mut value := init
for e in array {
value = fold_op(value, e)
}
return value
}
// fold_indexed sets `acc = init`, then successively calls `acc = fold_op(idx, acc, elem)` for each element in `array`.
// returns `acc`.
pub fn fold_indexed[T, R](array []T, init R, fold_op fn (idx int, acc R, elem T) R) R {
mut value := init
for i, e in array {
value = fold_op(i, value, e)
}
return value
}
// flatten flattens n + 1 dimensional array into n dimensional array
// Example: arrays.flatten<int>([[1, 2, 3], [4, 5]]) // => [1, 2, 3, 4, 5]
pub fn flatten[T](array [][]T) []T {
// calculate required capacity
mut required_size := 0
for e1 in array {
for _ in e1 {
required_size += 1
}
}
// allocate flattened array
mut result := []T{cap: required_size}
for e1 in array {
for e2 in e1 {
result << e2
}
}
return result
}
// flat_map creates a new array populated with the flattened result of calling transform function
// being invoked on each element of `list`.
pub fn flat_map[T, R](array []T, transform fn (elem T) []R) []R {
mut result := [][]R{cap: array.len}
for v in array {
result << transform(v)
}
return flatten(result)
}
// flat_map_indexed creates a new array populated with the flattened result of calling the `transform` function
// being invoked on each element with its index in the original array.
pub fn flat_map_indexed[T, R](array []T, transform fn (idx int, elem T) []R) []R {
mut result := [][]R{cap: array.len}
for i, v in array {
result << transform(i, v)
}
return flatten(result)
}
// map_indexed creates a new array populated with the result of calling the `transform` function
// being invoked on each element with its index in the original array.
pub fn map_indexed[T, R](array []T, transform fn (idx int, elem T) R) []R {
mut result := []R{cap: array.len}
for i, v in array {
result << transform(i, v)
}
return result
}
// group_by groups together elements, for which the `grouping_op` callback produced the same result.
// Example: arrays.group_by[int, string](['H', 'el', 'lo'], fn (v string) int { return v.len }) // => {1: ['H'], 2: ['el', 'lo']}
pub fn group_by[K, V](array []V, grouping_op fn (val V) K) map[K][]V {
mut result := map[K][]V{}
for v in array {
key := grouping_op(v)
// check if key exists, if not, then create a new array with matched value, otherwise append.
if key in result {
result[key] << v
} else {
result[key] = [v]
}
}
return result
}
// concatenate an array with an arbitrary number of additional values
//
// NOTE: if you have two arrays, you should simply use the `<<` operator directly
// Example: arrays.concat([1, 2, 3], 4, 5, 6) == [1, 2, 3, 4, 5, 6] // => true
// Example: arrays.concat([1, 2, 3], ...[4, 5, 6]) == [1, 2, 3, 4, 5, 6] // => true
// Example: arr << [4, 5, 6] // does what you need if arr is mutable
pub fn concat[T](a []T, b ...T) []T {
mut m := []T{cap: a.len + b.len}
m << a
m << b
return m
}
// returns the smallest element >= val, requires `array` to be sorted
// Example: arrays.lower_bound([2, 4, 6, 8], 3)! // => 4
pub fn lower_bound[T](array []T, val T) !T {
if array.len == 0 {
return error('.lower_bound called on an empty array')
}
mut left, mut right := 0, array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := array[idx]
if elem < val {
left = idx + 1
} else {
right = idx - 1
}
}
if left >= array.len {
return error('')
} else {
return array[left]
}
}
// returns the largest element <= val, requires `array` to be sorted
// Example: arrays.upper_bound([2, 4, 6, 8], 3)! // => 2
pub fn upper_bound[T](array []T, val T) !T {
if array.len == 0 {
return error('.upper_bound called on an empty array')
}
mut left, mut right := 0, array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := array[idx]
if elem > val {
right = idx - 1
} else {
left = idx + 1
}
}
if right < 0 {
return error('')
} else {
return array[right]
}
}
// binary search, requires `array` to be sorted, returns index of found item or error.
// Binary searches on sorted lists can be faster than other array searches because at maximum
// the algorithm only has to traverse log N elements
// Example: arrays.binary_search([1, 2, 3, 4], 4)! // => 3
pub fn binary_search[T](array []T, target T) !int {
mut left := 0
mut right := array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := array[idx]
if elem == target {
return idx
}
if elem < target {
left = idx + 1
} else {
right = idx - 1
}
}
return error('')
}
// rotate_left rotates the array in-place such that the first `mid` elements of the array move to the end
// while the last `array.len - mid` elements move to the front. After calling `rotate_left`, the element
// previously at index `mid` will become the first element in the array.
// Example:
// ```v
// mut x := [1,2,3,4,5,6]
// arrays.rotate_left(mut x, 2)
// println(x) // [3, 4, 5, 6, 1, 2]
// ```
pub fn rotate_left[T](mut array []T, mid int) {
assert mid <= array.len && mid >= 0
k := array.len - mid
p := &T(array.data)
unsafe {
ptr_rotate[T](mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
}
}
// rotate_right rotates the array in-place such that the first `array.len - k` elements of the array move to the end
// while the last `k` elements move to the front. After calling `rotate_right`, the element previously at index `array.len - k`
// will become the first element in the array.
// Example:
// ```v
// mut x := [1,2,3,4,5,6]
// arrays.rotate_right(mut x, 2)
// println(x) // [5, 6, 1, 2, 3, 4]
// ```
pub fn rotate_right[T](mut array []T, k int) {
assert k <= array.len && k >= 0
mid := array.len - k
p := &T(array.data)
unsafe {
ptr_rotate[T](mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
}
}
[unsafe]
fn ptr_rotate[T](left_ int, mid &T, right_ int) {
sz := usize(sizeof(T))
mut left := usize(left_)
mut right := usize(right_)
limit := raw_array_cap[T]()
for {
delta := if left < right { left } else { right }
if delta <= usize(limit) {
break
}
unsafe {
swap_nonoverlapping[T](&T(usize(voidptr(mid)) - left * sz), &T(usize(voidptr(mid)) +
usize(right - delta) * sz), int(delta))
}
if left <= right {
right -= delta
} else {
left -= delta
}
}
unsafe {
rawarray := malloc(raw_array_malloc_size[T]())
defer {
free(rawarray)
}
dim := &T(usize(voidptr(mid)) - left * sz + right * sz)
if left <= right {
vmemcpy(rawarray, voidptr(usize(voidptr(mid)) - left * sz), isize(left * sz))
vmemmove(voidptr(usize(voidptr(mid)) - left * sz), voidptr(mid), isize(right * sz))
vmemcpy(voidptr(dim), rawarray, isize(left * sz))
} else {
vmemcpy(rawarray, voidptr(mid), isize(right * sz))
vmemmove(voidptr(dim), voidptr(usize(voidptr(mid)) - left * sz), isize(left * sz))
vmemcpy(voidptr(usize(voidptr(mid)) - left * sz), rawarray, isize(right * sz))
}
}
}
struct Block {
mut:
x u64
y u64
z u64
w u64
}
struct UnalignedBlock {
mut:
x u64
y u64
z u64
w u64
}
const extra_size = 32 * isize(sizeof(usize))
fn raw_array_cap[T]() isize {
size := isize(sizeof(T))
if size > arrays.extra_size {
return 1
} else {
return arrays.extra_size / size
}
}
fn raw_array_malloc_size[T]() isize {
size := isize(sizeof(T))
if size > arrays.extra_size {
return size * 2
} else {
return arrays.extra_size
}
}
[unsafe]
fn memswap(x voidptr, y voidptr, len usize) {
block_size := isize(sizeof(Block))
mut i := usize(0)
for i + usize(block_size) <= len {
mut t_ := Block{}
t := voidptr(&t_)
xi := usize(x) + i
yi := usize(y) + i
unsafe {
vmemcpy(t, voidptr(xi), block_size)
vmemcpy(voidptr(xi), voidptr(yi), block_size)
vmemcpy(t, voidptr(yi), block_size)
}
i += usize(block_size)
}
if i < len {
mut t_ := UnalignedBlock{}
t := voidptr(&t_)
rem := isize(len - i)
xi := usize(x) + i
yi := usize(y) + i
unsafe {
vmemcpy(t, voidptr(xi), rem)
vmemcpy(voidptr(xi), voidptr(yi), rem)
vmemcpy(voidptr(yi), t, rem)
}
}
}
[unsafe]
fn swap_nonoverlapping[T](x_ &T, y_ &T, count int) {
x := voidptr(x_)
y := voidptr(y_)
len := usize(sizeof(T)) * usize(count)
unsafe {
memswap(x, y, len)
}
}
// copy copies the `src` array elements to the `dst` array.
// The number of the elements copied is the minimum of the length of both arrays.
// Returns the number of elements copied.
pub fn copy[T](mut dst []T, src []T) int {
min := if dst.len < src.len { dst.len } else { src.len }
if min <= 0 {
return 0
}
if can_copy_bits[T]() {
blen := min * isize(sizeof(T))
unsafe { vmemmove(&T(dst.data), src.data, blen) }
} else {
for i in 0 .. min {
dst[i] = src[i]
}
}
return min
}
// determines if T can be copied using `memcpy`
// false if autofree needs to intervene
// false if type is not copyable e.g. map
fn can_copy_bits[T]() bool {
// references, C pointers, integers, floats, runes
if T.name[0] in [`&`, `b`, `c`, `f`, `i`, `r`, `u`, `v`] {
return true
}
return false
}
// carray_to_varray copies a C byte array into a V array of type `T`.
// See also: `cstring_to_vstring`
[unsafe]
pub fn carray_to_varray[T](c_array_data voidptr, items int) []T {
mut v_array := []T{len: items}
total_size := items * isize(sizeof(T))
unsafe { vmemcpy(v_array.data, c_array_data, total_size) }
return v_array
}