mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
252 lines
5.2 KiB
V
252 lines
5.2 KiB
V
module stats
|
|
|
|
import math
|
|
|
|
// TODO: Implement all of them with generics
|
|
|
|
// This module defines the following statistical operations on f64 array
|
|
// ---------------------------
|
|
// | Summary of Functions |
|
|
// ---------------------------
|
|
// -----------------------------------------------------------------------
|
|
// freq - Frequency
|
|
// mean - Mean
|
|
// geometric_mean - Geometric Mean
|
|
// harmonic_mean - Harmonic Mean
|
|
// median - Median
|
|
// mode - Mode
|
|
// rms - Root Mean Square
|
|
// population_variance - Population Variance
|
|
// sample_variance - Sample Variance
|
|
// population_stddev - Population Standard Deviation
|
|
// sample_stddev - Sample Standard Deviation
|
|
// mean_absdev - Mean Absolute Deviation
|
|
// min - Minimum of the Array
|
|
// max - Maximum of the Array
|
|
// range - Range of the Array ( max - min )
|
|
// -----------------------------------------------------------------------
|
|
|
|
|
|
// Measure of Occurance
|
|
// Frequency of a given number
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/frequency-distribution.html
|
|
pub fn freq(arr []f64, val f64) int {
|
|
if arr.len == 0 {
|
|
return 0
|
|
}
|
|
mut count := 0
|
|
for v in arr {
|
|
if v == val {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
// Measure of Central Tendancy
|
|
// Mean of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn mean(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += v
|
|
}
|
|
return sum/f64(arr.len)
|
|
}
|
|
|
|
// Measure of Central Tendancy
|
|
// Geometric Mean of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/numbers/geometric-mean.html
|
|
pub fn geometric_mean(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut sum := f64(1)
|
|
for v in arr {
|
|
sum *= v
|
|
}
|
|
return math.pow(sum,f64(1)/arr.len)
|
|
}
|
|
|
|
// Measure of Central Tendancy
|
|
// Harmonic Mean of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/numbers/harmonic-mean.html
|
|
pub fn harmonic_mean(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += f64(1)/v
|
|
}
|
|
return f64(arr.len)/sum
|
|
}
|
|
|
|
// Measure of Central Tendancy
|
|
// Median of the given input array ( input array is assumed to be sorted )
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn median(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
if arr.len % 2 == 0 {
|
|
mid := (arr.len/2)-1
|
|
return (arr[mid] + arr[mid+1])/f64(2)
|
|
}
|
|
else {
|
|
return arr[((arr.len-1)/2)]
|
|
}
|
|
}
|
|
|
|
// Measure of Central Tendancy
|
|
// Mode of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/central-measures.html
|
|
pub fn mode(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut freqs := []int{}
|
|
for v in arr {
|
|
freqs<<freq(arr,v)
|
|
}
|
|
mut max := 0
|
|
for i in 0..freqs.len {
|
|
if freqs[i] > freqs[max] {
|
|
max = i
|
|
}
|
|
}
|
|
return arr[max]
|
|
}
|
|
|
|
// Root Mean Square of the given input array
|
|
// Based on
|
|
// https://en.wikipedia.org/wiki/Root_mean_square
|
|
pub fn rms(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += math.pow(v,2)
|
|
}
|
|
return math.sqrt(sum/f64(arr.len))
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Population Variance of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn population_variance(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
m := mean(arr)
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += math.pow(v-m,2)
|
|
}
|
|
return sum/f64(arr.len)
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Sample Variance of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn sample_variance(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
m := mean(arr)
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += math.pow(v-m,2)
|
|
}
|
|
return sum/f64(arr.len-1)
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Population Standard Deviation of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn population_stddev(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
return math.sqrt(population_variance(arr))
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Sample Standard Deviation of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/standard-deviation.html
|
|
pub fn sample_stddev(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
return math.sqrt(sample_variance(arr))
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Mean Absolute Deviation of the given input array
|
|
// Based on
|
|
// https://en.wikipedia.org/wiki/Average_absolute_deviation
|
|
pub fn mean_absdev(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
amean := mean(arr)
|
|
mut sum := f64(0)
|
|
for v in arr {
|
|
sum += math.abs(v-amean)
|
|
}
|
|
return sum/f64(arr.len)
|
|
}
|
|
|
|
// Minimum of the given input array
|
|
pub fn min(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut min := arr[0]
|
|
for v in arr {
|
|
if v < min {
|
|
min = v
|
|
}
|
|
}
|
|
return min
|
|
}
|
|
|
|
// Maximum of the given input array
|
|
pub fn max(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
mut max := arr[0]
|
|
for v in arr {
|
|
if v > max {
|
|
max = v
|
|
}
|
|
}
|
|
return max
|
|
}
|
|
|
|
// Measure of Dispersion / Spread
|
|
// Range ( Maximum - Minimum ) of the given input array
|
|
// Based on
|
|
// https://www.mathsisfun.com/data/range.html
|
|
pub fn range(arr []f64) f64 {
|
|
if arr.len == 0 {
|
|
return f64(0)
|
|
}
|
|
return max(arr) - min(arr)
|
|
}
|