mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
324 lines
6.5 KiB
V
324 lines
6.5 KiB
V
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module math
|
|
|
|
#include <math.h>
|
|
|
|
fn C.acos(x f64) f64
|
|
fn C.asin(x f64) f64
|
|
fn C.atan(x f64) f64
|
|
fn C.atan2(y f64, x f64) f64
|
|
fn C.cbrt(x f64) f64
|
|
fn C.ceil(x f64) f64
|
|
fn C.cos(x f64) f64
|
|
fn C.cosf(x f32) f32
|
|
fn C.cosh(x f64) f64
|
|
fn C.erf(x f64) f64
|
|
fn C.erfc(x f64) f64
|
|
fn C.exp(x f64) f64
|
|
fn C.exp2(x f64) f64
|
|
fn C.fabs(x f64) f64
|
|
fn C.floor(x f64) f64
|
|
fn C.fmod(x f64, y f64) f64
|
|
fn C.hypot(x f64, y f64) f64
|
|
fn C.log(x f64) f64
|
|
fn C.log2(x f64) f64
|
|
fn C.log10(x f64) f64
|
|
fn C.lgamma(x f64) f64
|
|
fn C.pow(x f64, y f64) f64
|
|
fn C.powf(x f32, y f32) f32
|
|
fn C.round(x f64) f64
|
|
fn C.sin(x f64) f64
|
|
fn C.sinf(x f32) f32
|
|
fn C.sinh(x f64) f64
|
|
fn C.sqrt(x f64) f64
|
|
fn C.sqrtf(x f32) f32
|
|
fn C.tgamma(x f64) f64
|
|
fn C.tan(x f64) f64
|
|
fn C.tanf(x f32) f32
|
|
fn C.tanh(x f64) f64
|
|
fn C.trunc(x f64) f64
|
|
|
|
// NOTE
|
|
// When adding a new function, please make sure it's in the right place.
|
|
// All functions are sorted alphabetically.
|
|
|
|
// Returns the absolute value.
|
|
pub fn abs(a f64) f64 {
|
|
return C.fabs(a)
|
|
}
|
|
|
|
// acos calculates inverse cosine (arccosine).
|
|
pub fn acos(a f64) f64 {
|
|
return C.acos(a)
|
|
}
|
|
|
|
// asin calculates inverse sine (arcsine).
|
|
pub fn asin(a f64) f64 {
|
|
return C.asin(a)
|
|
}
|
|
|
|
// atan calculates inverse tangent (arctangent).
|
|
pub fn atan(a f64) f64 {
|
|
return C.atan(a)
|
|
}
|
|
|
|
// atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point.
|
|
pub fn atan2(a, b f64) f64 {
|
|
return C.atan2(a, b)
|
|
}
|
|
|
|
// cbrt calculates cubic root.
|
|
pub fn cbrt(a f64) f64 {
|
|
return C.cbrt(a)
|
|
}
|
|
|
|
// ceil returns the nearest f64 greater or equal to the provided value.
|
|
pub fn ceil(a f64) f64 {
|
|
return C.ceil(a)
|
|
}
|
|
|
|
// cos calculates cosine.
|
|
pub fn cos(a f64) f64 {
|
|
return C.cos(a)
|
|
}
|
|
|
|
// cosf calculates cosine. (float32)
|
|
pub fn cosf(a f32) f32 {
|
|
return C.cosf(a)
|
|
}
|
|
|
|
// cosh calculates hyperbolic cosine.
|
|
pub fn cosh(a f64) f64 {
|
|
return C.cosh(a)
|
|
}
|
|
|
|
// degrees convert from degrees to radians.
|
|
pub fn degrees(radians f64) f64 {
|
|
return radians * (180.0 / pi)
|
|
}
|
|
|
|
// exp calculates exponent of the number (math.pow(math.E, a)).
|
|
pub fn exp(a f64) f64 {
|
|
return C.exp(a)
|
|
}
|
|
|
|
// digits returns an array of the digits of n in the given base.
|
|
pub fn digits(_n, base int) []int {
|
|
if base < 2 {
|
|
panic('digits: Cannot find digits of n with base $base')
|
|
}
|
|
mut n := _n
|
|
mut sign := 1
|
|
if n < 0 {
|
|
sign = -1
|
|
n = -n
|
|
}
|
|
mut res := []int
|
|
for n != 0 {
|
|
res << (n % base) * sign
|
|
n /= base
|
|
}
|
|
return res
|
|
}
|
|
|
|
// erf computes the error function value
|
|
pub fn erf(a f64) f64 {
|
|
return C.erf(a)
|
|
}
|
|
|
|
// erfc computes the complementary error function value
|
|
pub fn erfc(a f64) f64 {
|
|
return C.erfc(a)
|
|
}
|
|
|
|
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
|
pub fn exp2(a f64) f64 {
|
|
return C.exp2(a)
|
|
}
|
|
|
|
// floor returns the nearest f64 lower or equal of the provided value.
|
|
pub fn floor(a f64) f64 {
|
|
return C.floor(a)
|
|
}
|
|
|
|
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
|
pub fn fmod(a, b f64) f64 {
|
|
return C.fmod(a, b)
|
|
}
|
|
|
|
// gamma computes the gamma function value
|
|
pub fn gamma(a f64) f64 {
|
|
return C.tgamma(a)
|
|
}
|
|
|
|
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
|
|
pub fn gcd(a_, b_ i64) i64 {
|
|
mut a := a_
|
|
mut b := b_
|
|
if a < 0 {
|
|
a = -a
|
|
}
|
|
if b < 0 {
|
|
b = -b
|
|
}
|
|
for b != 0 {
|
|
a %= b
|
|
if a == 0 {
|
|
return b
|
|
}
|
|
b %= a
|
|
}
|
|
return a
|
|
}
|
|
|
|
// Returns hypotenuse of a right triangle.
|
|
pub fn hypot(a, b f64) f64 {
|
|
return C.hypot(a, b)
|
|
}
|
|
|
|
// lcm calculates least common (non-negative) multiple.
|
|
pub fn lcm(a, b i64) i64 {
|
|
if a == 0 {
|
|
return a
|
|
}
|
|
res := a * (b / gcd(b, a))
|
|
if res < 0 {
|
|
return -res
|
|
}
|
|
return res
|
|
}
|
|
|
|
// log calculates natural (base-e) logarithm of the provided value.
|
|
pub fn log(a f64) f64 {
|
|
return C.log(a)
|
|
}
|
|
|
|
// log2 calculates base-2 logarithm of the provided value.
|
|
pub fn log2(a f64) f64 {
|
|
return C.log2(a)
|
|
}
|
|
|
|
// log10 calculates the common (base-10) logarithm of the provided value.
|
|
pub fn log10(a f64) f64 {
|
|
return C.log10(a)
|
|
}
|
|
|
|
// log_gamma computes the log-gamma function value
|
|
pub fn log_gamma(a f64) f64 {
|
|
return C.lgamma(a)
|
|
}
|
|
|
|
// log_n calculates base-N logarithm of the provided value.
|
|
pub fn log_n(a, b f64) f64 {
|
|
return C.log(a) / C.log(b)
|
|
}
|
|
|
|
// max returns the maximum value of the two provided.
|
|
pub fn max(a, b f64) f64 {
|
|
if a > b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// min returns the minimum value of the two provided.
|
|
pub fn min(a, b f64) f64 {
|
|
if a < b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// pow returns base raised to the provided power.
|
|
pub fn pow(a, b f64) f64 {
|
|
return C.pow(a, b)
|
|
}
|
|
|
|
// powf returns base raised to the provided power. (float32)
|
|
pub fn powf(a, b f32) f32 {
|
|
return C.powf(a, b)
|
|
}
|
|
|
|
// radians convert from radians to degrees.
|
|
pub fn radians(degrees f64) f64 {
|
|
return degrees * (pi / 180.0)
|
|
}
|
|
|
|
// round returns the integer nearest to the provided value.
|
|
pub fn round(f f64) f64 {
|
|
return C.round(f)
|
|
}
|
|
|
|
// sin calculates sine.
|
|
pub fn sin(a f64) f64 {
|
|
return C.sin(a)
|
|
}
|
|
|
|
// sinf calculates sine. (float32)
|
|
pub fn sinf(a f32) f32 {
|
|
return C.sinf(a)
|
|
}
|
|
|
|
// sinh calculates hyperbolic sine.
|
|
pub fn sinh(a f64) f64 {
|
|
return C.sinh(a)
|
|
}
|
|
|
|
// sqrt calculates square-root of the provided value.
|
|
pub fn sqrt(a f64) f64 {
|
|
return C.sqrt(a)
|
|
}
|
|
|
|
// sqrtf calculates square-root of the provided value. (float32)
|
|
pub fn sqrtf(a f32) f32 {
|
|
return C.sqrtf(a)
|
|
}
|
|
|
|
// tan calculates tangent.
|
|
pub fn tan(a f64) f64 {
|
|
return C.tan(a)
|
|
}
|
|
|
|
// tanf calculates tangent. (float32)
|
|
pub fn tanf(a f32) f32 {
|
|
return C.tanf(a)
|
|
}
|
|
|
|
// tanh calculates hyperbolic tangent.
|
|
pub fn tanh(a f64) f64 {
|
|
return C.tanh(a)
|
|
}
|
|
|
|
// trunc rounds a toward zero, returning the nearest integral value that is not
|
|
// larger in magnitude than a.
|
|
pub fn trunc(a f64) f64 {
|
|
return C.trunc(a)
|
|
}
|
|
|
|
// Faster approximate sin() and cos() implemented from lolremez
|
|
pub fn aprox_sin(a f64) f64 {
|
|
a0 := 1.91059300966915117e-31
|
|
a1 := 1.00086760103908896
|
|
a2 := -1.21276126894734565e-2
|
|
a3 := -1.38078780785773762e-1
|
|
a4 := -2.67353392911981221e-2
|
|
a5 := 2.08026600266304389e-2
|
|
a6 := -3.03996055049204407e-3
|
|
a7 := 1.38235642404333740e-4
|
|
return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * a7))))))
|
|
}
|
|
|
|
pub fn aprox_cos(a f64) f64 {
|
|
a0 := 9.9995999154986614e-1
|
|
a1 := 1.2548995793001028e-3
|
|
a2 := -5.0648546280678015e-1
|
|
a3 := 1.2942246466519995e-2
|
|
a4 := 2.8668384702547972e-2
|
|
a5 := 7.3726485210586547e-3
|
|
a6 := -3.8510875386947414e-3
|
|
a7 := 4.7196604604366623e-4
|
|
a8 := -1.8776444013090451e-5
|
|
return a0 + a * (a1 + a * (a2 + a * (a3 + a * (a4 + a * (a5 + a * (a6 + a * (a7 + a * a8)))))))
|
|
} |