1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/strconv/atof.c.v
2022-01-04 12:21:12 +03:00

442 lines
9.5 KiB
V

module strconv
/*
atof util
Copyright (c) 2019-2022 Dario Deledda. All rights reserved.
Use of this source code is governed by an MIT license
that can be found in the LICENSE file.
This file contains utilities for convert a string in a f64 variable
IEEE 754 standard is used
Know limitation:
- limited to 18 significant digits
The code is inspired by:
Grzegorz Kraszewski krashan@teleinfo.pb.edu.pl
URL: http://krashan.ppa.pl/articles/stringtofloat/
Original license: MIT
96 bit operation utilities
Note: when u128 will be available these function can be refactored
*/
// right logical shift 96 bit
fn lsr96(s2 u32, s1 u32, s0 u32) (u32, u32, u32) {
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
r0 = (s0 >> 1) | ((s1 & u32(1)) << 31)
r1 = (s1 >> 1) | ((s2 & u32(1)) << 31)
r2 = s2 >> 1
return r2, r1, r0
}
// left logical shift 96 bit
fn lsl96(s2 u32, s1 u32, s0 u32) (u32, u32, u32) {
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
r2 = (s2 << 1) | ((s1 & (u32(1) << 31)) >> 31)
r1 = (s1 << 1) | ((s0 & (u32(1) << 31)) >> 31)
r0 = s0 << 1
return r2, r1, r0
}
// sum on 96 bit
fn add96(s2 u32, s1 u32, s0 u32, d2 u32, d1 u32, d0 u32) (u32, u32, u32) {
mut w := u64(0)
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
w = u64(s0) + u64(d0)
r0 = u32(w)
w >>= 32
w += u64(s1) + u64(d1)
r1 = u32(w)
w >>= 32
w += u64(s2) + u64(d2)
r2 = u32(w)
return r2, r1, r0
}
// subtraction on 96 bit
fn sub96(s2 u32, s1 u32, s0 u32, d2 u32, d1 u32, d0 u32) (u32, u32, u32) {
mut w := u64(0)
mut r0 := u32(0)
mut r1 := u32(0)
mut r2 := u32(0)
w = u64(s0) - u64(d0)
r0 = u32(w)
w >>= 32
w += u64(s1) - u64(d1)
r1 = u32(w)
w >>= 32
w += u64(s2) - u64(d2)
r2 = u32(w)
return r2, r1, r0
}
/*
Constants
*/
pub const (
//
// f32 constants
//
single_plus_zero = u32(0x0000_0000)
single_minus_zero = u32(0x8000_0000)
single_plus_infinity = u32(0x7F80_0000)
single_minus_infinity = u32(0xFF80_0000)
//
// f64 constants
//
digits = 18
double_plus_zero = u64(0x0000000000000000)
double_minus_zero = u64(0x8000000000000000)
double_plus_infinity = u64(0x7FF0000000000000)
double_minus_infinity = u64(0xFFF0000000000000)
//
// Possible parser return values.
//
parser_ok = 0 // parser finished OK
parser_pzero = 1 // no digits or number is smaller than +-2^-1022
parser_mzero = 2 // number is negative, module smaller
parser_pinf = 3 // number is higher than +HUGE_VAL
parser_minf = 4 // number is lower than -HUGE_VAL
//
// char constants
// Note: Modify these if working with non-ASCII encoding
//
c_dpoint = `.`
c_plus = `+`
c_minus = `-`
c_zero = `0`
c_nine = `9`
c_ten = u32(10)
)
/*
Utility
*/
// NOTE: Modify these if working with non-ASCII encoding
fn is_digit(x byte) bool {
return (x >= strconv.c_zero && x <= strconv.c_nine) == true
}
fn is_space(x byte) bool {
return x == `\t` || x == `\n` || x == `\v` || x == `\f` || x == `\r` || x == ` `
}
fn is_exp(x byte) bool {
return (x == `E` || x == `e`) == true
}
/*
Support struct
*/
/*
String parser
NOTE: #TOFIX need one char after the last char of the number
*/
fn parser(s string) (int, PrepNumber) {
mut digx := 0
mut result := strconv.parser_ok
mut expneg := false
mut expexp := 0
mut i := 0
mut pn := PrepNumber{}
// skip spaces
for i < s.len && s[i].is_space() {
i++
}
// check negatives
if s[i] == `-` {
pn.negative = true
i++
}
// positive sign ignore it
if s[i] == `+` {
i++
}
// read mantissa
for i < s.len && s[i].is_digit() {
// println("$i => ${s[i]}")
if digx < strconv.digits {
pn.mantissa *= 10
pn.mantissa += u64(s[i] - strconv.c_zero)
digx++
} else if pn.exponent < 2147483647 {
pn.exponent++
}
i++
}
// read mantissa decimals
if (i < s.len) && (s[i] == `.`) {
i++
for i < s.len && s[i].is_digit() {
if digx < strconv.digits {
pn.mantissa *= 10
pn.mantissa += u64(s[i] - strconv.c_zero)
pn.exponent--
digx++
}
i++
}
}
// read exponent
if (i < s.len) && ((s[i] == `e`) || (s[i] == `E`)) {
i++
if i < s.len {
// esponent sign
if s[i] == strconv.c_plus {
i++
} else if s[i] == strconv.c_minus {
expneg = true
i++
}
for i < s.len && s[i].is_digit() {
if expexp < 214748364 {
expexp *= 10
expexp += int(s[i] - strconv.c_zero)
}
i++
}
}
}
if expneg {
expexp = -expexp
}
pn.exponent += expexp
if pn.mantissa == 0 {
if pn.negative {
result = strconv.parser_mzero
} else {
result = strconv.parser_pzero
}
} else if pn.exponent > 309 {
if pn.negative {
result = strconv.parser_minf
} else {
result = strconv.parser_pinf
}
} else if pn.exponent < -328 {
if pn.negative {
result = strconv.parser_mzero
} else {
result = strconv.parser_pzero
}
}
return result, pn
}
/*
Converter to the bit form of the f64 number
*/
// converter return a u64 with the bit image of the f64 number
fn converter(mut pn PrepNumber) u64 {
mut binexp := 92
mut s2 := u32(0) // 96-bit precision integer
mut s1 := u32(0)
mut s0 := u32(0)
mut q2 := u32(0) // 96-bit precision integer
mut q1 := u32(0)
mut q0 := u32(0)
mut r2 := u32(0) // 96-bit precision integer
mut r1 := u32(0)
mut r0 := u32(0)
mask28 := u32(u64(0xF) << 28)
mut result := u64(0)
// working on 3 u32 to have 96 bit precision
s0 = u32(pn.mantissa & u64(0x00000000FFFFFFFF))
s1 = u32(pn.mantissa >> 32)
s2 = u32(0)
// so we take the decimal exponent off
for pn.exponent > 0 {
q2, q1, q0 = lsl96(s2, s1, s0) // q = s * 2
r2, r1, r0 = lsl96(q2, q1, q0) // r = s * 4 <=> q * 2
s2, s1, s0 = lsl96(r2, r1, r0) // s = s * 8 <=> r * 2
s2, s1, s0 = add96(s2, s1, s0, q2, q1, q0) // s = (s * 8) + (s * 2) <=> s*10
pn.exponent--
for (s2 & mask28) != 0 {
q2, q1, q0 = lsr96(s2, s1, s0)
binexp++
s2 = q2
s1 = q1
s0 = q0
}
}
for pn.exponent < 0 {
for !((s2 & (u32(1) << 31)) != 0) {
q2, q1, q0 = lsl96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
q2 = s2 / strconv.c_ten
r1 = s2 % strconv.c_ten
r2 = (s1 >> 8) | (r1 << 24)
q1 = r2 / strconv.c_ten
r1 = r2 % strconv.c_ten
r2 = ((s1 & u32(0xFF)) << 16) | (s0 >> 16) | (r1 << 24)
r0 = r2 / strconv.c_ten
r1 = r2 % strconv.c_ten
q1 = (q1 << 8) | ((r0 & u32(0x00FF0000)) >> 16)
q0 = r0 << 16
r2 = (s0 & u32(0xFFFF)) | (r1 << 16)
q0 |= r2 / strconv.c_ten
s2 = q2
s1 = q1
s0 = q0
pn.exponent++
}
// C.printf("mantissa before normalization: %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
// normalization, the 28 bit in s2 must the leftest one in the variable
if s2 != 0 || s1 != 0 || s0 != 0 {
for (s2 & mask28) == 0 {
q2, q1, q0 = lsl96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
}
// rounding if needed
/*
* "round half to even" algorithm
* Example for f32, just a reminder
*
* If bit 54 is 0, round down
* If bit 54 is 1
* If any bit beyond bit 54 is 1, round up
* If all bits beyond bit 54 are 0 (meaning the number is halfway between two floating-point numbers)
* If bit 53 is 0, round down
* If bit 53 is 1, round up
*/
/*
test case 1 complete
s2=0x1FFFFFFF
s1=0xFFFFFF80
s0=0x0
*/
/*
test case 1 check_round_bit
s2=0x18888888
s1=0x88888880
s0=0x0
*/
/*
test case check_round_bit + normalization
s2=0x18888888
s1=0x88888F80
s0=0x0
*/
// C.printf("mantissa before rounding: %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
// s1 => 0xFFFFFFxx only F are rapresented
nbit := 7
check_round_bit := u32(1) << u32(nbit)
check_round_mask := u32(0xFFFFFFFF) << u32(nbit)
if (s1 & check_round_bit) != 0 {
// C.printf("need round!! cehck mask: %08x\n", s1 & ~check_round_mask )
if (s1 & ~check_round_mask) != 0 {
// C.printf("Add 1!\n")
s2, s1, s0 = add96(s2, s1, s0, 0, check_round_bit, 0)
} else {
// C.printf("All 0!\n")
if (s1 & (check_round_bit << u32(1))) != 0 {
// C.printf("Add 1 form -1 bit control!\n")
s2, s1, s0 = add96(s2, s1, s0, 0, check_round_bit, 0)
}
}
s1 = s1 & check_round_mask
s0 = u32(0)
// recheck normalization
if s2 & (mask28 << u32(1)) != 0 {
// C.printf("Renormalize!!")
q2, q1, q0 = lsr96(s2, s1, s0)
binexp--
s2 = q2
s1 = q1
s0 = q0
}
}
// tmp := ( u64(s2 & ~mask28) << 24) | ((u64(s1) + u64(128)) >> 8)
// C.printf("mantissa after rounding : %08x%08x%08x binexp: %d \n", s2,s1,s0,binexp)
// C.printf("Tmp result: %016x\n",tmp)
// end rounding
// offset the binary exponent IEEE 754
binexp += 1023
if binexp > 2046 {
if pn.negative {
result = strconv.double_minus_infinity
} else {
result = strconv.double_plus_infinity
}
} else if binexp < 1 {
if pn.negative {
result = strconv.double_minus_zero
} else {
result = strconv.double_plus_zero
}
} else if s2 != 0 {
mut q := u64(0)
binexs2 := u64(binexp) << 52
q = (u64(s2 & ~mask28) << 24) | ((u64(s1) + u64(128)) >> 8) | binexs2
if pn.negative {
q |= (u64(1) << 63)
}
result = q
}
return result
}
/*
Public functions
*/
// atof64 return a f64 from a string doing a parsing operation
pub fn atof64(s string) f64 {
mut pn := PrepNumber{}
mut res_parsing := 0
mut res := Float64u{}
res_parsing, pn = parser(s)
match res_parsing {
strconv.parser_ok {
res.u = converter(mut pn)
}
strconv.parser_pzero {
res.u = strconv.double_plus_zero
}
strconv.parser_mzero {
res.u = strconv.double_minus_zero
}
strconv.parser_pinf {
res.u = strconv.double_plus_infinity
}
strconv.parser_minf {
res.u = strconv.double_minus_infinity
}
else {}
}
return unsafe { res.f }
}